Skip to main content
Log in

Transformations of Cerium Tetrafluoride Hydrate under Hydrothermal Conditions: A New Cerium Fluoride Hydrate Ce3F10·3H2O

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The behavior of cerium tetrafluoride hydrate was studied in water at a temperature of 80°C and under hydrothermal treatment at 100, 130, and 220°C for a day. The product of the hydrothermal treatment of CeF4·H2O at 100°C was investigated by chemical, thermogravimetric, IR spectroscopic, and X-ray powder diffraction analyses, which identified a new cerium fluoride with the composition, presumably, Ce3F10⋅3H2O or, most likely, (H3O)Ce3F10⋅2H2O. New compound crystallizes in the space group \(Fm\bar {3}m\) with a unit cell parameter of 11.66 Å. Hydrothermal treatment of cerium tetrafluoride hydrate at temperatures above 130°C leads to hydrolysis and reduction of cerium(IV) fluoride compounds to form CeO2 and CeF3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H.-J. Lin, H.-W. Li, H. Murakami, et al., J. Alloys Compd. 735, 1017 (2018). https://doi.org/10.1016/j.jallcom.2017.10.239

    Article  CAS  Google Scholar 

  2. G. K. Liu, G. Jursich, J. Huang, et al., J. Alloys Compd. 213214, 207 (1994). https://doi.org/10.1016/0925-8388(94)90905-9

  3. Y. Sun, X. Yang, H. Mei, et al., ACS Omega 6, 11348 (2021). https://doi.org/10.1021/acsomega.1c00332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Haase and H. Schäfer, Angew. Chem., Int. Ed. Engl. 50, 5808 (2011). https://doi.org/10.1002/anie.201005159

    Article  CAS  PubMed  Google Scholar 

  5. G.-B. Shan and G. P. Demopoulos, Adv. Mater. 22, 4373 (2010). https://doi.org/10.1002/adma.201001816

    Article  CAS  PubMed  Google Scholar 

  6. B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009). https://doi.org/10.1039/b913877c

    Article  CAS  PubMed  Google Scholar 

  7. F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009). https://doi.org/10.1039/b809132n

    Article  CAS  PubMed  Google Scholar 

  8. F. Wang, D. Banerjee, Y. Liu, et al., Analyst 135, 1839 (2010). https://doi.org/10.1039/c0an00144a

    Article  CAS  PubMed  Google Scholar 

  9. N. S. Chilingarov, A. V. Knot’ko, I. M. Shlyapnikov, et al., J. Phys. Chem. A 119, 8452 (2015). https://doi.org/10.1021/acs.jpca.5b04105

    Article  CAS  PubMed  Google Scholar 

  10. K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths, vol. 36 (2006). https://doi.org/10.1016/S0168-1273(06)36003-5

    Book  Google Scholar 

  11. T. Furuya, A. S. Kamlet, and T. Ritter, Nature 473, 470 (2011). https://doi.org/10.1038/nature10108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Grzechnik, C. C. Underwood, J. W. Kolis, et al., J. Fluorine Chem. 156, 124 (2013). https://doi.org/10.1016/j.jfluchem.2013.09.002

    Article  CAS  Google Scholar 

  13. C. Lopez, X. Deschanels, J. M. Bart, et al., J. Nucl. Mater. 312, 76 (2003). https://doi.org/10.1016/S0022-3115(02)01549-0

    Article  CAS  Google Scholar 

  14. R. Marsac, F. Réal, N. L. Banik, et al., Dalton. Trans. 46, 13553 (2017). https://doi.org/10.1039/C7DT02251D

    Article  CAS  PubMed  Google Scholar 

  15. R. Schmidt and B. G. Muller, Z. Anorg. Allg. Chem. 625, 605 (1999). https://doi.org/10.1002/(SICI)1521-3749(199904)62-5:4<605::AID-ZAAC605>3.0.CO;2-6

    Article  CAS  Google Scholar 

  16. W. H. Zachariasen, Acta Crystallogr. 2, 388 (1949). https://doi.org/10.1107/S0365110X49001016

    Article  CAS  Google Scholar 

  17. D. Brown, Halides of the Lanthanides and Actinides (Wiley, New York, 1968).

    Google Scholar 

  18. F. Gabela, B. Kojić-Prodić, M. Šljukić, et al., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 33, 3733 (1977). https://doi.org/10.1107/S0567740877011960

    Article  Google Scholar 

  19. T. N. Waters, J. Inorg. Nucl. Chem. 15, 320 (1960). https://doi.org/10.1016/0022-1902(60)80061-9

    Article  CAS  Google Scholar 

  20. D. Hall, C. E. F. Rickard, and T. N. Waters, Nature 207, 405 (1965). https://doi.org/10.1038/207405b0

    Article  CAS  Google Scholar 

  21. A. V. Gerasimenko, R. L. Davidovich, V. V. Tkachev, et al., Acta Crystallogr., Sect. E 62, M196 (2006). https://doi.org/10.1107/S1600536805042479

    Article  CAS  Google Scholar 

  22. Y. Du, J. Yu, Y. Chen, et al., Dalton. Trans. 2009, 6736 (2009). https://doi.org/10.1039/b902998b

    Article  CAS  Google Scholar 

  23. V. O. Gel’mbol’dt, E. V. Ganin, L. V. Koroeva, et al., Zh. Neorg. Khim. 46, 1833 (2001).

    Google Scholar 

  24. K. Rakhmatullaev, Sh. T. Talipov, and R. Yusupova, Dokl. AN UzSSR 4, 46 (1962).

    Google Scholar 

  25. A. A. Opalovskii, Izv. SO AN SSSR 67, 46 (1964).

    Google Scholar 

  26. Yu. M. Kiselev, L. I. Martynenko, and V. I. Spitsyn, Zh. Neorg. Khim. 20, 576 (1975).

    CAS  Google Scholar 

  27. W. Asker and A. Wylie, Aust. J. Chem. 18, 959 (1965). https://doi.org/10.1071/CH9650959

    Article  CAS  Google Scholar 

  28. E. G. Il’in, A. S. Parshakov, L. D. Iskhakova, et al., J. Fluorine Chem. 236, 109576 (2020). https://doi.org/10.1016/j.jfluchem.2020.109576

    Article  CAS  Google Scholar 

  29. J. K. Dawson, R. W. M. D’Eye, and A. E. Truswell, J. Chem. Soc. 3922 (1954). https://doi.org/10.1039/jr9540003922

  30. M. J. D. Champion, W. Levason, and G. Reid, J. Fluorine Chem. 157, 19 (2014). https://doi.org/10.1016/j.jfluchem.2013.10.014

    Article  CAS  Google Scholar 

  31. E. G. Il’in, A. S. Parshakov, V. G. Yarzhemsky, et al., J. Fluorine Chem. 251, 109897 (2021). https://doi.org/10.1016/j.jfluchem.2021.109897

    Article  CAS  Google Scholar 

  32. F. Le Berre, E. Boucher, M. Allain, et al., J. Mater. Chem. 10, 2578 (2000). https://doi.org/10.1039/b002520h

    Article  CAS  Google Scholar 

  33. A. K. Cheetham, B. E. F. Fender, H. Fuess, et al., Acta Crystallogr., Sect. B 32, 94 (1976). https://doi.org/10.1107/S0567740876002380

    Article  Google Scholar 

  34. S. V. Kuznetsov, V. V. Osiko, E. A. Tkatchenko, et al., Russ. Chem. Rev. 75, 1065 (2006). https://doi.org/10.1070/RC2006v075n12ABEH003637

    Article  CAS  Google Scholar 

  35. C. Caron, D. Boudreau, and A. M. Ritcey, J. Mater. Chem. C 3, 9955 (2015). https://doi.org/10.1039/C5TC02527C

    Article  CAS  Google Scholar 

  36. O. V. Andrrev, I. A. Razumkova, and A. N. Boiko, J. Fluorine Chem. 207, 77 (2018). https://doi.org/10.1016/j.jfluchem.2017.12.001

    Article  CAS  Google Scholar 

  37. N. F. Stephens and P. Lightfoot, J. Solid State Chem. 180, 260 (2007). https://doi.org/10.1016/j.jssc.2006.09.032

    Article  CAS  Google Scholar 

  38. N. V. Podberezskaya, O. G. Potapova, S. V. Borisov, et al., J. Struct. Chem. 17, 815 (1977). https://doi.org/10.1007/BF00746034

    Article  Google Scholar 

  39. P. P. Fedorov, S. V. Kuznetsov, and V. V. Osiko, Progr. Fluorine Sci. Ser. 7 (2016). https://doi.org/10.1016/B978-0-12-801639-8.00002-7

  40. P. P. Fedorov, M. N. Mayakova, S. V. Kuznetsov, et al., Nanosyst. Physics, Chem. Mat. 8, 462 (2017). https://doi.org/10.17586/2220-8054-2017-8-4-462-470

    Article  CAS  Google Scholar 

  41. T. S. Dzhabiev, V. Y. Tkachenko, Z. M. Dzhabieva, et al., Russ. J. Phys. Chem. A 94, 1330 (2020). https://doi.org/10.1134/S0036024420060096

    Article  CAS  Google Scholar 

  42. M. D. Karkas, O. Verho, E. V. Johnston, et al., Chem. Rev. 114, 11863 (2014). https://doi.org/10.1021/cr400572f

    Article  CAS  PubMed  Google Scholar 

  43. D. Prieur, W. Bonani, K. Popa, et al., Inorg. Chem. 59, 5760 (2020). https://doi.org/10.1021/acs.inorgchem.0c00506

    Article  CAS  PubMed  Google Scholar 

  44. T. V. Plakhova, A. Y. Romanchuk, S. M. Butorin, et al., Nanoscale 11, 18142 (2019). https://doi.org/10.1039/c9nr06032d

    Article  CAS  PubMed  Google Scholar 

  45. W. Finkelnburg and A. Stein, J. Chem. Phys. 18, 1296 (1950). https://doi.org/10.1063/1.1747929

    Article  CAS  Google Scholar 

  46. M. Udayakantha, P. Schofield, G. R. Waetzig, et al., J. Solid State Chem. 270, 569 (2019). https://doi.org/10.1016/j.jssc.2018.12.017

    Article  CAS  Google Scholar 

  47. N. C. Baenziger, J. R. Holden, G. E. Knudson, et al., J. Am. Chem. Soc. 76, 4734 (1954). https://doi.org/10.1021/ja01647a073

    Article  CAS  Google Scholar 

  48. I. D. Zakiryanova, P. N. Mushnikov, E. V. Nikolaeva, et al., Processes 11, 988 (2023). https://doi.org/10.3390/pr11040988

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment of the Centers for Shared Use of Scientific Equipment of the Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, Russia, and of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported by the Russian Science Foundation (project no. 19-13-00416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Il’in.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, E.G., Parshakov, A.S., Iskhakova, L.D. et al. Transformations of Cerium Tetrafluoride Hydrate under Hydrothermal Conditions: A New Cerium Fluoride Hydrate Ce3F10·3H2O. Russ. J. Inorg. Chem. 68, 1334–1342 (2023). https://doi.org/10.1134/S003602362360171X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362360171X

Keywords:

Navigation