Skip to main content
Log in

A New Family of Trinuclear Complexes (CH3)4N[M33-F)(TFA)6(py)3] (M = Mn, Co, Ni, Cu, Zn): Synthesis, Crystal Structure, and Thermal Stability

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Trinuclear complexes Me4N[Ni33-F)(TFA)6(MeOH)2(H2O)] (1) and Me4N[M33-F)(TFA)6(py)3] (M = Mn (2), Co (3), Ni (4), Cu (5), Zn (6)) have been synthesized by crystallization from methanol solutions. Single-crystal X-ray diffraction shows that compounds 16 are composed of tetramethylammonium cations Me4N+ and trinuclear triangular anions [Ni33-F)(TFA)6(MeOH)2(H2O)] (1) or [M33-F)(TFA)6(py)3] (26) centered by the μ3-F atom. The bridging trifluoroacetate anions (TFA) located along the triangle edges link pairs of M2+ cations, and the axial positions are occupied by MeOH, H2O, or pyridine (py) molecules. In 2, the pyridine molecules are nearly coplanar with the [M3F] triangle, while in the other structures they are turned almost perpendicularly. The different orientations of py molecules lead to different packing motifs: columns of alternating trinuclear anions and Me4N+ cations are formed in 2, while in 36 anions and cations form neutral layers. A significant role in the organization of structures 16 is played by non-covalent interactions, such as hydrogen bonds and stacking and CH···π interactions. Heating complexes 24 above 200°С turns out to lead to a stepwise thermal decomposition, which begins with the elimination of py and ends with the formation of d-metal fluoride above 300°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. E. Nikiforova, I. A. Lutsenko, M. A. Kiskin, et al., Russ. J. Inorg. Chem. 66, 1343 (2021). https://doi.org/10.1134/S0036023621090102

    Article  CAS  Google Scholar 

  2. V. V. Sharutin and O. K. Sharutina, Russ. J. Inorg. Chem. 66, 361 (2021). https://doi.org/10.1134/S0036023621030153

    Article  CAS  Google Scholar 

  3. L. B. Serezhkina, D. S. Mitina, A. V. Vologzhanina, et al., Russ. J. Inorg. Chem. 67, 1769 (2022). https://doi.org/10.1134/S0036023622600915

    Article  CAS  Google Scholar 

  4. T. Y. Chikineva, D. S. Koshelev, A. V. Medved’ko, et al., Russ. J. Inorg. Chem. 66, 170 (2021). https://doi.org/10.1134/S0036023621020054

    Article  CAS  Google Scholar 

  5. D. S. Tereshchenko, I. V. Morozov, A. I. Boltalin, et al., Russ. J. Inorg. Chem. 49, 836 (2004).

    Google Scholar 

  6. D. S. Tereshchenko, I. V. Morozov, A. I. Boltalin, et al., Crystallogr. Rep. 58, 68 (2013). https://doi.org/10.1134/S106377451206017X

    Article  CAS  Google Scholar 

  7. I. V. Morozov, E. V. Karpova, T. Yu. Glazunova, et al., Russ. J. Coord. Chem. 42, 647 (2016). https://doi.org/10.1134/S107032841610002X

    Article  CAS  Google Scholar 

  8. Z.-L. Xie, M.-L. Feng, B. Tan, and X.-Y. Huang, Cryst-EngComm 14, 4894 (2012). https://doi.org/10.1039/C2CE25169H

    Article  CAS  Google Scholar 

  9. J. Noack, C. Fritz, C. Flugel, et al., Dalton Trans. 42, 5706 (2013). https://doi.org/10.1039/c3dt32652g

    Article  CAS  PubMed  Google Scholar 

  10. J. P. S. Walsh, S. B. Meadows, A. Ghirri, et al., Inorg. Chem. 54, 12019 (2015). https://doi.org/10.1021/acs.inorgchem.5b01898

    Article  CAS  PubMed  Google Scholar 

  11. J. E. Reynolds III, K. M. Walsh, B. Li, et al., Chem. Commun. 54, 9937 (2018). https://doi.org/10.1039/C8CC05402A

  12. D. Aulakh, T. Islamoglu, V. F. Bagundeset, et al., Chem. Mater. 30, 8332 (2018). https://doi.org/10.1021/acs.chemmater.8b03885

    Article  CAS  Google Scholar 

  13. STOE WinXPOW, version 2.25, October 5, 2009, STOE & Cie GmbH.

  14. Jana 2008. Version 25/10/2015, Vaclav Petricek, Michal Dusek, and Lukas Palatinus, Institute of Physics, Academy of Sciences of the Czech Republic (Praha).

  15. PCPDFWIN. Version 2.2. June 2001. JCPDS-ICDD.

  16. G. M. Sheldrick, Acta Cryst. A71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  17. G. M. Sheldrick, C71, 3 (2015).

  18. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  19. R. D. Shannon, Acta Cryst. A32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  20. Cambridge Structural Database System (version 2019).

  21. H. Irving and R. J. P. Williams, J. Chem. Soc. 3192 (1953). https://doi.org/10.1039/JR9530003192

  22. T. Yu. Glazunova, D. S. Tereschenko, M. E. Buzoverov, et al., Russ. J. Coord. Chem. 47, 347 (2021). https://doi.org/10.1134/S1070328421040023

  23. N. L. Armanasco, M. V. Baker, D. H. Brown, et al., Inorg. Chim. Acta 357, 4562 (2004). https://doi.org/10.1016/j.ica.2004.07.012

    Article  CAS  Google Scholar 

  24. T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002). https://doi.org/10.1002/1521-3773(20020104)41:1%3C-48::AID-ANIE48%3E3.0.CO;2-U

    Article  CAS  Google Scholar 

  25. J. A. K. Howard, V. J. Hoy, D. O’Hagan, and G. T. Smith, Tetrahedron 52, 12613 (1996). https://doi.org/10.1016/0040-4020(96)00749-1

    Article  CAS  Google Scholar 

  26. T. Sierański, J. Mol. Model. 23, 338 (2017). https://doi.org/10.1007/s00894-017-3496-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Umezawa, S. Tsuboyama, K. Honda, et al., Bull. Chem. Soc. Jpn. 71, 1207 (1998). https://doi.org/10.1246/bcsj.71.1207

    Article  CAS  Google Scholar 

  28. K. Shibasaki, A. Fujii, N. Mikami, and S. Tsuzuki, J. Phys. Chem. A 110, 4397 (2006). https://doi.org/10.1021/jp0605909

    Article  CAS  PubMed  Google Scholar 

  29. D. B. Kayumova, D. S. Tereschenko, T. B. Shatalova, et al., Russ. J. Coord. Chem. 48, 870 (2002). https://doi.org/10.1134/S1070328422700026

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Shared Facility Center “Polymer Research Center” of the Institute of Synthetic Polymer Materials, RAS, with the support of the Ministry of Science and Higher Education of the Russian Federation (subject no. 0071-2021-0004) for the opportunity to conduct thermogravimetric analysis. The work used equipment purchased at the expense of the Development Program of the Moscow State University.

Funding

The study was supported by the Russian Science Foundation (project no. 22-72-10034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Tereshchenko.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, D.S., Buzoverov, M.E., Glazunova, T.Y. et al. A New Family of Trinuclear Complexes (CH3)4N[M33-F)(TFA)6(py)3] (M = Mn, Co, Ni, Cu, Zn): Synthesis, Crystal Structure, and Thermal Stability. Russ. J. Inorg. Chem. 68, 1282–1292 (2023). https://doi.org/10.1134/S0036023623601666

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601666

Keywords:

Navigation