Skip to main content
Log in

Scandium(III) Benzoyltrifluoroacetonate: Structure and Thermal Properties

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Scandium(III) benzoyltrifluoroacetonate [Sc(btfac)3] was synthesized, purified, and characterized by elemental analysis and 1H NMR spectroscopy. Its structure was determined by single-crystal X-ray diffraction at 150 K. The complex has a molecular structure and is an axial isomer. All ligands in it are bidentate-cyclic coordinated; scandium is in a distorted octahedral environment, d(Sc–O) = 2.0681(2)–2.094(2) Å. There are two types of stacking interactions. The thermal properties in the condensed phase were studied by thermal analysis and differential scanning calorimetry (DSC). The temperature, enthalpy, and entropy of melting of the complex were determined as 399.1 ± 0.5 K, \({{\Delta }_{{\text{m}}}}H_{{{{T}_{{\text{m}}}}}}^{^\circ }\) = 36.8 ± 1.3 kJ/mol, and \({{\Delta }_{{\text{m}}}}S_{{{{T}_{{\text{m}}}}}}^{^\circ }\) = 92.2 ± 3.3 J/(K mol), respectively. The temperature-dependent saturated vapor pressure of [Sc(btfac)3] was determined in the temperature range 413–443 K by the flow (transpiration) method. The thermodynamic characteristics of vaporization at an average temperature were calculated: \({{{{\Delta }}}_{{{\text{vap}}}}}H_{{430}}^{^\circ }\) = 135 ± 4 kJ/mol, and \({{{{\Delta }}}_{{{\text{vap}}}}}S_{{430}}^{^\circ }\) = 212 ± 9 J/(K mol). The structure and thermal properties of scandium benzoyltrifluoroacetonate were compared to those of similar scandium tris-β-diketonate complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. X. Song, M. H. Chang, and M. Pecht, JOM 65, 1276 (2013). https://doi.org/10.1007/s11837-013-0737-6

    Article  Google Scholar 

  2. Z. Xu, A. Daga, and H. Chen, Appl. Phys. Lett. 79, 3782 (2001). https://doi.org/10.1063/1.1424072

    Article  CAS  Google Scholar 

  3. M. F. Al-Kuhaili, Thin Solid Films 426, 178 (2003). https://doi.org/10.1016/S0040-6090(03)00015-4

    Article  CAS  Google Scholar 

  4. K. Takaichi, H. Yagi, P. Becker, et al., Laser Phys. Lett. 4, 507 (2007). https://doi.org/10.1002/lapl.200710020

    Article  CAS  Google Scholar 

  5. V. Lupei, N. Pavel, and A. Lupei, Laser Phys. 24, 045801 (2014). https://doi.org/10.1088/1054-660X/24/4/045801

    Article  CAS  Google Scholar 

  6. J. Selvakumar, V. S. Raghunathan, and K. S. Nagaraja, Chem. Vap. Dep. 15, 262 (2009). https://doi.org/10.1002/cvde.200906792

    Article  CAS  Google Scholar 

  7. K. V. Zherikova, L. N. Zelenina, T. P. Chusova, et al., Phys. Proc. 46, 200 (2013). https://doi.org/10.1016/j.phpro.2013.07.068

    Article  CAS  Google Scholar 

  8. P. Kong, Y. Pu, P. Ma, et al., Thin Solid Films 714, 138357 (2020). https://doi.org/10.1016/j.tsf.2020.138357

    Article  CAS  Google Scholar 

  9. I. A. Karavaev, E. V. Savinkina, M. S. Grigor’ev, et al., Russ. J. Inorg. Chem. 67, 1178 (2022). https://doi.org/10.1134/S0036023622080186

    Article  CAS  Google Scholar 

  10. P. De Rouffignac, A. P. Yousef, K. H. Kim, et al., Electrochem. Solid State Lett. 9, F45 (2006). https://doi.org/10.1149/1.2191131

    Article  CAS  Google Scholar 

  11. T. P. Smirnova, L. V. Yakovkina, V. O. Borisov, et al., J. Struct. Chem. 58, 1573 (2017). https://doi.org/10.1134/S0022476617080145

    Article  CAS  Google Scholar 

  12. D. Jeong, J. Kim, O. Kwon, et al., Appl. Sci. 8, 2217 (2018). https://doi.org/10.3390/app8112217

    Article  CAS  Google Scholar 

  13. E. Y. Jung, C. S. Park, T. E. Hong, et al., Jpn. J. Appl. Phys. 53, 036002 (2014). https://doi.org/10.7567/JJAP.53.036002

    Article  CAS  Google Scholar 

  14. T. J. Anderson, M. A. Neuman, and G. A. Melson, Inorg. Chem. 12, 927 (1973). https://doi.org/10.1021/ic50122a046

    Article  CAS  Google Scholar 

  15. D. W. Bennett, T. A. Siddiquee, D. T. Haworth, et al., J. Chem. Crystallogr. 37, 207 (2007). https://doi.org/10.1007/s10870-006-9171-8

    Article  CAS  Google Scholar 

  16. K. V. Zherikova and N. V. Kuratieva, J. Struct. Chem. 60, 1622 (2019). https://doi.org/10.1134/S002247661910007X

    Article  Google Scholar 

  17. A. I. Smolentsev, K. V. Zherikova, M. S. Trusov, et al., J. Struct. Chem. 52, 1070 (2011). https://doi.org/10.1134/S0022476611060059

    Article  CAS  Google Scholar 

  18. A. M. Makarenko, N. V. Kuratieva, D. P. Pischur, et al., Russ. J. Inorg. Chem. 68, 183 (2023). https://doi.org/10.1134/S0036023622602215

    Article  Google Scholar 

  19. A. J. Rossini and R. W. Schurko, J. Am. Chem. Soc. 128, 10391 (2006). https://doi.org/10.1021/ja060477w

    Article  CAS  PubMed  Google Scholar 

  20. A. M. Makarenko, D. H. Zaitsau, and K. V. Zherikova, Coatings 13, 535 (2023). https://doi.org/10.3390/coatings13030535

    Article  CAS  Google Scholar 

  21. V. P. Fadeeva, V. D. Tikhova, and O. N. Nikulicheva, J. Anal. Chem. 63, 1094 (2008). https://doi.org/10.1134/S1061934808110142

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  23. E. S. Vikulova, S. A. Cherkasov, N. S. Nikolaeva, et al., J. Therm. Anal. Calorim. 135, 2573 (2019). https://doi.org/10.1007/s10973-018-7371-z

    Article  CAS  Google Scholar 

  24. K. Eisentraut, R. Sievers, D. Coucouvanis, et al., Inorganic Syntheses (McGraw-Hill, USA, 1968). https://doi.org/10.1002/9780470132425.ch17

  25. K. V. Zherikova, L. N. Zelenina, T. P. Chusova, et al., J. Chem. Thermodyn. 101, 162 (2016). https://doi.org/10.1016/j.jct.2016.05.020

    Article  CAS  Google Scholar 

  26. L. N. Zelenina, K. V. Zherikova, T. P. Chusova, et al., Thermochim. Acta 689, 178639 (2020). https://doi.org/10.1016/j.tca.2020.178639

    Article  CAS  Google Scholar 

  27. E. Stathatos, P. Lianos, E. Evgeniou, et al., Synth. Met. 139, 433 (2003). https://doi.org/10.1016/S0379-6779(03)00204-2

    Article  CAS  Google Scholar 

  28. N. Matsubara and T. Kuwamoto, Inorg. Chem. 24, 2697 (1985). https://doi.org/10.1021/ic00211a022

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Ministry of Science and Higher Education of the Russian Federation.

Funding

This work was supported by the Russian Science Foundation and the Government of the Novosibirsk Region (project No. 22-23-20182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zherikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sartakova, A.V., Makarenko, A.M., Kurat’eva, N.V. et al. Scandium(III) Benzoyltrifluoroacetonate: Structure and Thermal Properties. Russ. J. Inorg. Chem. 68, 1192–1199 (2023). https://doi.org/10.1134/S003602362360140X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362360140X

Keywords:

Navigation