Skip to main content
Log in

Hydrothermal Synthesis of Silver Sulfide

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Silver sulfide powders with submicro- and micrometer particle sizes have been synthesized by the hydrothermal method at temperatures from 373 to 453 K in aqueous and alcoholic solutions of silver nitrate, sodium sulfide and citrate, sulfur, and thiocarbamide. The crystal structures of the synthesized powders, morphology, composition, and particle size of silver sulfide have been analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, and gas adsorption. The powder particles have a similar morphology in the form of rectangular parallelepipeds and cubes with smoothed edges; the size of the powder particles depends on the synthesis conditions and ranges from ~500 to 2000 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017). https://doi.org/10.1039/C7TA04949H

    Article  CAS  Google Scholar 

  2. X. Wang, S. Yang, S. Ma, et al., Catal. Sci. Technol. 6, 242 (2016). https://doi.org/10.1039/C5CY00787A

    Article  Google Scholar 

  3. L. Gao, Z. Li, and J. Liu, RSC Adv. 7, 27515 (2017). https://doi.org/10.1039/C7RA03955G

  4. Y. Yang, M. A. Ashraf, A. Fakhri, et al., Spectrochim. Acta A 249, 7 (2021). https://doi.org/10.1016/j.saa.2020.119324

    Article  CAS  Google Scholar 

  5. C. Yang, T. Li, Y. Guo, et al., Spectrochim. Acta A 273, 121048 (2022). https://doi.org/10.1016/j.saa.2022.121048

    Article  CAS  Google Scholar 

  6. Z. Ren, C. Shen, K. Yuan, et al., Mater. Today Commun. 31, 103719 (2022). https://doi.org/10.1016/j.mtcomm.2022.103719

    Article  CAS  Google Scholar 

  7. M. W. Igbal, M. M. Faisal, ul H. Hassan, et al., J. Energy Storage 52A, 8 (2022). https://doi.org/10.1016/j.est.2022.104847

    Article  Google Scholar 

  8. H. U. Hassan, M. W. Igbal, A. M. Afzal, et al., Intern. J. Energy Res. 46, 11346 (2022). https://doi.org/10.1002/er.7932

    Article  CAS  Google Scholar 

  9. C. V. Li and S.-N. Ding, Anal. Methods 7, 4348 (2015). https://doi.org/10.1039/C5AY00685F

    Article  CAS  Google Scholar 

  10. W. P. Lim, Z. Zhang, H. Y. Low, et al., Angew. Chem., Int. Ed. Engl. 43, 5685 (2004). https://doi.org/10.1002/anie.200460566

    Article  CAS  PubMed  Google Scholar 

  11. X. B. Wang, W. M. Liu, J. C. Hao, et al., Chem. Lett. 34, 1664 (2005). https://doi.org/10.1246/cl.2005.1664

    Article  Google Scholar 

  12. L. H. Dong, Y. Chu, and Y. Liu, J. Colloid Interface Sci. 317, 485 (2008). https://doi.org/10.1016/j.jcis.2007.09.055

    Article  CAS  PubMed  Google Scholar 

  13. M. H. Chen and L. Gao, Mater. Lett. 60, 1059 (2006). https://doi.org/10.1016/j.matlet.2005.10.077

    Article  CAS  Google Scholar 

  14. C. L. Zhang, S. M. Zhang, L. G. Yu, et al., Mater. Lett. 85, 77 (2012). https://doi.org/10.1016/j.matlet.2012.06.112

    Article  CAS  Google Scholar 

  15. L. Y. Lv and H. Wang, Mater. Lett. 121, 105 (2014). https://doi.org/10.1016/j.matlet.2014.01.121

    Article  CAS  Google Scholar 

  16. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Superlattice Microst. 83, 35 (2015). https://doi.org/10.1016/j.spmi.2015.03.024

    Article  CAS  Google Scholar 

  17. S. I. Sadovnikov, A. I. Gusev, A. V. Chukin, et al., Phys. Chem. 18, 4617 (2016). https://doi.org/10.1039/c5cp07224g

    Article  CAS  Google Scholar 

  18. S. Kaowphong, J. Solid State Chem. 189, 108 (2012). https://doi.org/10.1016/j.jssc.2011.12.010

    Article  CAS  Google Scholar 

  19. S. I. Sadovnikov, Russ. J. Inorg. Chem. 64, 1309 (2019). https://doi.org/10.1134/S0036023619100115

    Article  CAS  Google Scholar 

  20. M. M. S. I. Khaleelullah, T. Dheivasigamani, P. Natarajan, et al., J. Cryst. Growth 468, 119 (2017). https://doi.org/10.1016/j.jcrysgro.2016.10.081

    Article  CAS  Google Scholar 

  21. Y. Chen, Y. Liang, T. Li, et al., J. Colloid Interface Sci. 555 (2019). https://doi.org/10.1016/j.jcis.2019.08.026

  22. J. Munaro, P. Dolceta, S. Nappini, et al., Appl. Surf. Sci. 514, 9 (2020). https://doi.org/10.1016/j.apsusc.2020.145856

    Article  CAS  Google Scholar 

  23. S. I. Sadovnikov, E. A. Kozlova, E. Yu. Gerasimov, et al., Int. J. Hydrogen. Energy 42, 25258 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.145

    Article  CAS  Google Scholar 

  24. Match! Version 1.10. Phase Identification from Powder Diffraction, 2003-2010, Crystal Impact.

  25. X’Pert HighScore Plus. Version 2.2e (2.2.5), PANalytical B. V. Almedo, the Netherlands.

  26. S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938). https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  27. S. I. Sadovnikov, A. I. Gusev, E. Yu. Gerasimov, et al., Chem. Phys. Lett. 642, 17 (2015). https://doi.org/10.1016/j.cplett.2015.11.004

    Article  CAS  Google Scholar 

  28. S. J. Greg and K. S. W. Sing, Adsorption, Surface Area and Porosity (Acad. Press, London, 1982).

    Google Scholar 

  29. http://webbook.nist.gov/chemistry/

  30. C. M. Perrott and N. H. Fletcher, J. Chem. Phys. 50, 2344 (1969). https://doi.org/10.1063/1.1671386

    Article  CAS  Google Scholar 

  31. W. T. Thompson and S. N. Flengas, Can. J. Chem. 49, 1550 (1971). https://doi.org/10.1139/v71-252

    Article  CAS  Google Scholar 

  32. H. Okazaki and A. Takano, Z. Naturforsch., A: Phys. Sci. 40, 986 (1985). https://doi.org/10.1515/zna-1985-1004

    Article  Google Scholar 

  33. F. Grønvold and E. F. Westrum, J. Chem. Thermodin 18, 381 (1986). https://doi.org/10.1016/0021-9614(86)90084-4

    Article  Google Scholar 

Download references

Funding

The work was carried out within the State Assignment no. АААА-А19-119031890029-7 (0397-2019-0001) of the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sadovnikov.

Ethics declarations

The author declares that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I. Hydrothermal Synthesis of Silver Sulfide. Russ. J. Inorg. Chem. 68, 515–522 (2023). https://doi.org/10.1134/S0036023623600569

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600569

Keywords:

Navigation