Skip to main content
Log in

Ion-Selective Membrane Electrode for Determination of the Octahydrotriborate Anion

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

An ion-selective electrode (ISE) based on a plasticized polyvinyl chloride membrane chemically doped with tetradecylammonium octahydrotriborate ([(С10H21)4N+]\([{{{\text{B}}}_{{\text{3}}}}{\text{H}}_{8}^{ - }]\)) has been developed. It is shown that the electrode has a reversible potentiometric response with respect to the octahydrotriborate anion in the presence of a number of other inorganic anions. The influence of the concentration of the electrode-active material and the nature of the plasticizer in the membrane phase on the electrochemical characteristics of the fabricated sensor have been studied. The optimal composition of the ion-sensitive membrane has been found. It has been found that the developed sensor provides a wide range of detectable concentrations of \({{{\text{B}}}_{{\text{3}}}}{\text{H}}_{8}^{ - }\) (1 × 10–7…1 × 10–2) and a low detection limit (10–7.3 M). The new ISE can be recommended for direct potentiometric detection of free octahydrotriborate anions in technological aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Stock, The Hydrides of Boron and Silicon (Cornell University Press, 1933).

    Google Scholar 

  2. A. Y. Bykov, K. Y. Zhizhin, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 59, 1539 (2014). https://doi.org/10.1134/S0036023614130026

    Article  CAS  Google Scholar 

  3. H. Hagemann, Molecules 26, 7425 (2021). https://doi.org/10.3390/molecules26247425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. S. Kubasov, I. V. Novikov, P. A. Starodubets, et al., Russ. J. Inorg. Chem. 67, 984 (2022). https://doi.org/10.1134/S0036023622070130

    Article  CAS  Google Scholar 

  5. V. V. Avdeeva, A. S. Kubasov, S. E. Korolenko, et al., Russ. J. Inorg. Chem. 67, 628 (2022). https://doi.org/10.1134/S0036023622050023

    Article  CAS  Google Scholar 

  6. L. V. Titov, Zh. Neorg. Khim. 48, 1613 (2003).

    CAS  Google Scholar 

  7. D. M. Goedde, G. K. Windler, and G. S. Girolami, Inorg. Chem. 46, 2814 (2007). https://doi.org/10.1021/ic0621300

    Article  CAS  PubMed  Google Scholar 

  8. S. Pylypko, A. Zadick, M. Chatenet, et al., J. Power Sources 286, 10 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.143

    Article  CAS  Google Scholar 

  9. H. Fu, X. Wang, Y. Shao, et al., Int. J. Hydrogen Energy 41, 384 (2016). https://doi.org/10.1016/j.ijhydene.2015.10.081

    Article  CAS  Google Scholar 

  10. R. Moury, A. Gigante, A. Remhof, et al., Dalton Trans. 49, 12168 (2020). https://doi.org/10.1039/D0DT02170A

    Article  PubMed  Google Scholar 

  11. A. Gigante, N. Leick, A. S. Lipton, et al., ACS Appl. Energy Mater. 4, 3737 (2021). https://doi.org/10.1021/acsaem.1c00159

    Article  CAS  Google Scholar 

  12. E. L. Surovtsev, E. S. Khain, and Yu. N. Shevchenko, Zh. Anal. Khim. 35, 1439 (1980).

    CAS  Google Scholar 

  13. A. V. Kopytin, K. Yu. Zhizhin, A. Yu. Bykov, RF Patent 2621888C1, 2017.

  14. R. P. Buck, in: Ion-Selective Electrodes in Analytical Chemistry. Modern Analytical Chemistry, Ed. by H. Freiser (Springer, Boston, MA, 1978). https://doi.org/10.1007/978-1-4684-2592-5_1

  15. E. Bakker and E. Pretsch, Angew. Chem. Int. Ed. 46, 5660 (2007). https://doi.org/10.1002/anie.200605068

    Article  CAS  Google Scholar 

  16. E. Zdrachek and E. Bakker, Anal. Chem. 91, 2 (2019). https://doi.org/10.1021/acs.analchem.8b04681

    Article  CAS  PubMed  Google Scholar 

  17. A. Craggs, D. J. Moody, and J. D. R. Thomas, J. Chem. Educ. 51, 541 (1974).

    Article  CAS  Google Scholar 

  18. A. Y. Bykov, G. A. Razgonyaeva, N. N. Mal’tseva, et al., Russ. J. Inorg. Chem. 57, 471 (2012). https://doi.org/10.1134/S0036023612040055

    Article  CAS  Google Scholar 

  19. A. Y. Bykov, N. N. Mal’tseva, N. B. Generalova, et al., Russ. J. Inorg. Chem. 58, 1321 (2013). https://doi.org/10.1134/S003602361311003X

    Article  CAS  Google Scholar 

  20. E. S. Turyshev, A. V. Kopytin, K. Y. Zhizhin, et al., Talanta 241, 123239 (2022). https://doi.org/10.1016/j.talanta.2022.123239

    Article  CAS  PubMed  Google Scholar 

  21. C. J. Coetzee and H. Freiser, Chem 41, 1128 (1969).

    CAS  Google Scholar 

  22. A. V. Kopytin, K. Y. Zhizhin, Y. I. Urusov, et al., J. Anal. Chem. 66, 666 (2011). https://doi.org/10.1134/S1061934811070070

    Article  CAS  Google Scholar 

  23. A. V. Kopytin, K. Y. Zhizhin, Y. I. Urusov, et al., J. Anal. Chem. 67, 168 (2012). https://doi.org/10.1134/S1061934812020074

    Article  CAS  Google Scholar 

  24. D. Wegmann, H. Weiss, D. Ammann, et al., Mikrochim. Acta 84, 1 (1984). https://doi.org/10.1007/BF01204153

    Article  Google Scholar 

  25. Yu. V. Matveichuk, E. M. Rakhman’ko, and E. B. Okaev, Ion-Selective Electrodes Based on Higher Quaternary Ammonium Salts, Reversible to Doubly Charged Inorganic Anions (Minsk, 2018) [in Russian].

    Google Scholar 

  26. Y. V. Matveichuk, Anal. Chem. Lett. 8, 428 (2018).

    Article  CAS  Google Scholar 

  27. U. Schaller, E. Bakker, and E. Pretsch, Anal. Chem. 67, 3123 (1995). https://doi.org/10.1021/ac00114a005

    Article  CAS  Google Scholar 

  28. O. M. Berezhkovskaya, E. D. Makarova, and E. A. Materova, Vestn. LGU 4, 65 (1986).

    Google Scholar 

  29. A. L. Smirnova, A. L. Grekovich, and E. A. Materova, Elektrokhimiya 10, 1187 (1987).

    Google Scholar 

  30. A. V. Kopytin, K. E. German, K. Y. Zhizhin, et al., Sens. Actuators, B: Chem. 310, 127853 (2020). https://doi.org/10.1016/j.snb.2020.127853

    Article  CAS  Google Scholar 

  31. R. P. Buck and E. Lindner, Pure Appl. Chem. 66, 2527 (1994). https://doi.org/10.1351/pac199466122527

    Article  CAS  Google Scholar 

  32. Z. Szigeti, T. Vigassy, E. Bakker, et al., Electroanalysis 18, 1254 (2006). https://doi.org/10.1002/elan.200603539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Z. Huang, X. Chen, T. Yisgedu, et al., Inorg. Chem. 50, 3738 (2011). https://doi.org/10.1021/ic2000987

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Center for Collective Use of the Physical Methods of Investigation of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences and the Council for Grants of the President of the Russian Federation (project MK-207.2022.1.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Turyshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopytin, A.V., Turyshev, E.S., Madraimov, M.S. et al. Ion-Selective Membrane Electrode for Determination of the Octahydrotriborate Anion. Russ. J. Inorg. Chem. 68, 6–12 (2023). https://doi.org/10.1134/S0036023622700103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622700103

Keywords:

Navigation