Skip to main content
Log in

CVD Synthesis of Graphitic Carbon Nitride Films from Melamine

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A CVD technique has been developed for the deposition of homogeneous graphitic carbon nitride films on silicon and quartz glass substrates using melamine as a precursor. Layer-by-layer deposition at low precursor loadings makes it possible to deposit a film up to 1.4 µm thick; however, it is possible to achieve large thicknesses by multiple repetition of the experimental cycle. The effect of synthesis parameters on the surface morphology of deposited layers has been studied by scanning electron microscopy. The chemical composition and structure of graphitic carbon nitride films are confirmed by a set of spectroscopic methods and X-ray diffraction. The optical properties have been studied using diffuse reflectance spectroscopy. Scanning electron microscopy and X-ray diffraction analysis have shown that films deposited at temperatures of 550–650°C have a layered microcrystalline structure. The bandgap of the obtained samples was 2.76–2.93 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Y. Liu and M. L. Cohen, Science 245, 841 (1989). https://doi.org/10.1126/science.245.4920.841

    Article  CAS  PubMed  Google Scholar 

  2. X. Deng, T. Hattori, N. Umehara, et al., Thin Solid Films 621, 12 (2017). https://doi.org/10.1016/j.tsf.2016.11.025

    Article  CAS  Google Scholar 

  3. E. Contreras, F. Bolivar, and M. A. Gomez, Surf. Coat. Technol. 332, 414 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.095

    Article  CAS  Google Scholar 

  4. X. Liu, N. Umehara, T. Tokoroyama, et al., Tribol. Int. 131, 102 (2019). https://doi.org/10.1016/j.triboint.2018.10.022

    Article  CAS  Google Scholar 

  5. X. Li and M. Xing, Comput. Mater. Sci. 158, 170 (2019). https://doi.org/10.1016/j.commatsci.2018.11.004

    Article  CAS  Google Scholar 

  6. Q. Wu, Q. Qianku Hu, Y. Hou, et al., J. Phys.: Condens. Matter. 30, 385402 (2018). https://doi.org/10.1088/1361-648X/aada2c

    Article  PubMed  Google Scholar 

  7. J. Du and X. Li, J. Alloys Compd. 815, 152324 (2020). https://doi.org/10.1016/j.jallcom.2019.152324

    Article  CAS  Google Scholar 

  8. N. H. Khanis, R. Ritikos, S. A. A. Kamal, et al., Materials 10, 102 (2017). https://doi.org/10.3390/ma10020102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. E. Kovacevic, T. Strunskus, N. M. Santhosh, et al., Carbon 184, 82 (2021). https://doi.org/10.1016/j.carbon.2021.08.008

    Article  CAS  Google Scholar 

  10. F. Fina, S. K. Callear, G. M. Carins, et al., Chem. Mater. 27, 2612 (2015). https://doi.org/10.1021/acs.chemmater.5b00411

    Article  CAS  Google Scholar 

  11. G. Dong, Y. Zhang, Q. Pan, et al., J. Photochem. Photobiol. 20, 33 (2014). https://doi.org/10.1016/j.jphotochemrev.2014.04.002

    Article  CAS  Google Scholar 

  12. J. Fu, J. Yu, C. Jiang, et al., Adv. Energy Mater. 8, 1701503 (2018). https://doi.org/10.1002/aenm.201701503

    Article  CAS  Google Scholar 

  13. D. A. Kozlov, K. A. Artamonov, A. O. Revenko, et al., Russ. J. Inorg. Chem. 67, 715 (2022). https://doi.org/10.1134/S0036023622050102

    Article  CAS  Google Scholar 

  14. T. Fidan, M. Torabfam, Q. Saleem, et al., Adv. Energy Sustain. Res. 2, 3 (2021). https://doi.org/10.1002/aesr.202000073

    Article  CAS  Google Scholar 

  15. G. Peng, L. Xing, J. Barrio, et al., Angew. Chem. 57, 1186 (2018). https://doi.org/10.1002/anie.201711669

    Article  CAS  Google Scholar 

  16. W. K. Darkwah and Y. Ao, Nanoscale Res. Lett. 13, 388 (2018). https://doi.org/10.1186/s11671-018-2702-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. W. Guo, S. Ming, Z. Chen, et al., ChemElectroChem 5, 3383 (2018). https://doi.org/10.1002/celc.201801045

    Article  CAS  Google Scholar 

  18. S. Majumder, Micro and Nano Technologies: Nanostructured Materials for Visible Light Photocatalysis (Elsevier, Amsterdam, 2022). https://doi.org/10.1016/j.matlet.2014.08.078

    Book  Google Scholar 

  19. J. Wang, D. R. Miller, and E. G. Gillan, Chem. Commun. 2258 (2002). https://doi.org/10.1039/B207041C

  20. R. M. Yadav, R. Kumar, and A. Aliyan, New J. Chem. 44, 2644 (2020). https://doi.org/10.1039/C9NJ05108B

    Article  CAS  Google Scholar 

  21. A. Thomas, A. Fischer, and F. Goettmann, J. Mater. Chem. 18, 4893 (2008). https://doi.org/10.1039/B800274F

    Article  CAS  Google Scholar 

  22. A. Sattler, S. Pagano, and M. Zeuner, Chem. Eur. J. 15, 13161 (2009). https://doi.org/10.1002/chem.200901518

    Article  CAS  PubMed  Google Scholar 

  23. Y. Hong, C. Li, D. Li, et al., Nanoscale 9, 14103 (2017). https://doi.org/10.1039/C7NR05155G

    Article  CAS  PubMed  Google Scholar 

  24. N. N. Vu, C. C. Nguyen, S. Kaliaguine, et al., ChemSusChem 12, 291 (2018). https://doi.org/10.1002/cssc.201802394

    Article  CAS  PubMed  Google Scholar 

  25. D. Vasilchenko, A. Zhurenok, A. Saraev, et al., Chem. Eng. J. 445, 136721 (2022). https://doi.org/10.1016/j.cej.2022.136721

    Article  CAS  Google Scholar 

  26. T. S. Miller, J. A. Belen, T. M. Suter, et al., Phys. Chem. Chem. Phys. 19, 15613 (2017). https://doi.org/10.1039/C7CP02711G

    Article  CAS  PubMed  Google Scholar 

  27. A. Durairaj, T. Sakthivel, S. Ramanathan, et al., ACS Omega 4, 6476 (2019). https://doi.org/10.1021/acsomega.8b03279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D. He, L. Du, K. Wang, et al., Russ. J. Inorg. Chem. 66, 1986 (2021). https://doi.org/10.1134/S0036023621130040

    Article  Google Scholar 

  29. Y. M. Zhang, C. W. An, D. F. Zhang, et al., Russ. J. Inorg. Chem. 66, 679 (2021). https://doi.org/10.1134/S0036023621050223

    Article  CAS  Google Scholar 

  30. T. M. Serikov, N. Kh. Ibraev, O. Ya. Isaikina, et al., Russ. J. Inorg. Chem. 66, 117 (2021). https://doi.org/10.1134/S0036023621010071

    Article  CAS  Google Scholar 

  31. M. Cesaria, A. P. Caricato, and M. Martino, Appl. Phys. Lett. 105, 031105 (2014). https://doi.org/10.1063/1.4890675

    Article  CAS  Google Scholar 

  32. K. R. Reddy, C. H. V. Reddy, M. N. Nadagouda, et al., J. Environ. Manage. 238, 25 (2019). https://doi.org/10.1016/j.jenvman.2019.02.075

    Article  CAS  PubMed  Google Scholar 

  33. O. Dubov, J. G. Marce, A. Fortuny, et al., J. Mater. Sci. 57, 4970 (2022). https://doi.org/10.1007/s10853-022-06906-5

    Article  CAS  Google Scholar 

  34. Y. Kang, Y. Yang, L. C. Yin, et al., Adv. Mater. 27, 4572 (2015). https://doi.org/10.1002/adma.201501939

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation through project no. 22-79-00173) for optimization of the synthesis procedure of g-C3N4 films and through project no. 21-13-00314 for investigation of optical properties of coatings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Ermakova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, E.N., Maksimovskii, E.A., Yushina, I.V. et al. CVD Synthesis of Graphitic Carbon Nitride Films from Melamine. Russ. J. Inorg. Chem. 68, 208–215 (2023). https://doi.org/10.1134/S0036023622602252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602252

Keywords:

Navigation