Skip to main content
Log in

Room Temperature Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Fluorescence Properties of One Novel Cubane Zinc Cluster Based on 1-{2-Hydroxy-3-[(2-Hydroxy-3-Methoxy-Benzylidene)-Amino]-Phenyl}-Ethanone

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

One novel distorted cubane zinc cluster, [Zn4(L)4]·(DMF)2 (1, H2L = 1-{2-Hydroxy-3-[(2- hydroxy-3-methoxy-benzylidene)-amino]-phenyl}-ethanone, DMF = N,N'-dimethyl-formamide), was obtained by room temperature synthesis. The cluster was characterized using elemental analysis, powder X‑ray diffraction, IR spectroscopy, and single-crystal X-ray diffraction. 1 is a cubane zinc cluster. The L ligand of 1 displays two different coordination modes: One is the μ3-L6O1,N1,O2:O2:O2,O3 and the other is μ2-L5O1,O2:O2,N1,O3 coordination modes. Hirshfeld surface analysis revealed that H···H interaction was the most abundant intermolecular interaction. The cluster emits a red fluorescence of 622 at 517 nm excite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. J. Liu, Q. H. Li, D. J. Li, et al., Angew. Chem. Int. Ed. 60, 4849 (2021). https://doi.org/10.1002/anie.202012919

    Article  CAS  Google Scholar 

  2. J. Liu, G. P. Yang, J. Jin, et al., Chem. Commun. 56, 2395 (2020). https://doi.org/10.1039/c9cc09664g

    Article  CAS  Google Scholar 

  3. W. W. Zhao, J. L. Peng, W. K. Wang, et al., Coord. Chem. Rev. 377, 44 (2018). https://doi.org/10.1016/j.ccr.2018.08.023

    Article  CAS  Google Scholar 

  4. Y. P. Wu, J. W. Tian, S. Liu, Angew. Chem. Int. Ed. 58, 12185 (2019). https://doi.org/10.1002/anie.201907136

    Article  CAS  Google Scholar 

  5. A. Palii, S. Aldoshin, B. Tsukerblat, Coord. Chem. Rev. 426, 213555 (2021). https://doi.org/10.1016/j.ccr.2020.213555

    Article  CAS  Google Scholar 

  6. Q. Wang, L. P.Yu, Z. Q. Zhang, et al., J. Mol. Struct. 1223, 129220 (2021). https://doi.org/10.1016/j.molstruc.2020.129220

    Article  CAS  Google Scholar 

  7. J. M. Wang, Q. J. Deng, S.H. Zhang, Chin. J. Struct. Chem. 39, 118 (2020). https://doi.org/10.14102/j.cnki.0254-5861.2011-2395

    Article  CAS  Google Scholar 

  8. Y. J. Zhang, Q. Chen, H. Y. Zhang, et al., J. Clust. Sci. 33, 1339 (2021). https://doi.org/10.1007/s10876-021-02064-x

    Article  CAS  Google Scholar 

  9. Y. Zhao, X. G. Yang, X. M. Lu, et al., Inorg. Chem. 58, 6215 (2019). https://doi.org/10.1021/acs.inorgchem.9b00450

    Article  CAS  Google Scholar 

  10. M. Y. She, Z. H. Wang, J. Chen, et al., Coord. Chem. Rev. 432, 213712 (2021). https://doi.org/10.1016/j.ccr.2020.213712

    Article  CAS  Google Scholar 

  11. Y. M. Zeng, H. Y. Zhang, Y. J. Zhang, et al., Appl. Organomet. Chem. 34, e5712 (2020). https://doi.org/10.1002/aoc.5712

    Article  CAS  Google Scholar 

  12. Y. H. Qiao, Y. T. Chen, S. H. Zhang, et al., Arab. J. Chem. 14, 103237 (2021). https://doi.org/10.1016/j.arabjc.2021.103237

    Article  CAS  Google Scholar 

  13. J. Masternak, M. Zienkiewicz-Machnik, M. Kowalik, et al., Coord. Chem. Rev. 327, 242 (2016). https://doi.org/10.1016/j.ccr.2016.01.007

    Article  CAS  Google Scholar 

  14. Y. Unver, S. Deniz, F. Çelik, et al., J. Enzyme Inhib. Med. Chem. 31, 89 (2016). https://doi.org/10.1080/14756366.2016.1206088

    Article  CAS  Google Scholar 

  15. K. Karrouchi, L. Chemlal, J. Taoufik, et al., Ann. Pharm. Fr. 74, 431 (2016). https://doi.org/10.1016/j.pharma.2016.03.005

    Article  CAS  Google Scholar 

  16. X. Liu, J. R. Hamon, Coord. Chem. Rev. 389, 94 (2019). https://doi.org/10.1016/j.ccr.2019.03.010

    Article  CAS  Google Scholar 

  17. W. Zafar, S.H. Sumrra, Z.H. Chohan, Eur. J. Med. Chem. 222, 113602 (2021). https://doi.org/10.1016/j.ejmech.2021.113602

    Article  CAS  Google Scholar 

  18. H. E. Hashem, E. A. Mohamed, A. A. Farag, et al., Appl Organomet. Chem. 35, e6322 (2021). https://doi.org/10.1002/aoc.6322

    Article  CAS  Google Scholar 

  19. V. K. Singh, R. Kadu, H. Roy, et al., Dalton Trans. 45, 1443 (2016). https://doi.org/10.1039/c5dt03407h

    Article  CAS  Google Scholar 

  20. Y. Sun, Y. L. Lu, M. L. Bian, et al., Eur. J. Med. Chem. 211, 113098 (2021) https://doi.org/10.1016/j.ejmech.2020.113098

    Article  CAS  Google Scholar 

  21. H.Y. Zhang, Y. Li, W. Wang, et al., J. Coord. Chem. 69, 1938 (2016). https://doi.org/10.1080/00958972.2016.1195493

    Article  CAS  Google Scholar 

  22. Y. Bunno, Y. Tsukimawashi, M. Kojima, et al., ACS Catal. 11, 2663 (2021). https://doi.org/10.1021/acscatal.0c05261

    Article  CAS  Google Scholar 

  23. X. J. Li, S. Q. Xie, Y. Z. Hu, et al., Chem. Commun. 57, 2392 (2021). https://doi.org/10.1039/d0cc08403d

    Article  CAS  Google Scholar 

  24. S. Kumari, A. Ramesh, B. Das, et al., Inorg. Chem. Front. 8, 1553 (2021). https://doi.org/10.1039/d0qi01190h

    Article  CAS  Google Scholar 

  25. M. T. Kaczmarek, M. Zabiszak, M. Nowak, et al., Coord. Chem. Rev. 370, 42 (2018). https://doi.org/10.1016/j.ccr.2018.05.012

    Article  CAS  Google Scholar 

  26. S. H. Sumrra, A. Suleman, Z. H. Chohan, et al., Russ. J. Gen. Chem. 87, 1281 (2017). https://doi.org/10.1134/S107036321706024X

    Article  CAS  Google Scholar 

  27. M. Hanif, Z. H. Chohan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 104, 468 (2013). https://doi.org/10.1016/j.saa.2012.11.077

    Article  CAS  Google Scholar 

  28. M. Fondo, N. Ocampo, A. M. García-Deibe, et al., Dalton Trans. 23, 3785 (2005). https://doi.org/10.1039/b507068f

    Article  CAS  Google Scholar 

  29. Y. T. Chen, S. N. Zhang, Y. Xiao, et al., Acta Cryst. C76, 236 (2020). https://doi.org/10.1107/S2053229620001850

    Article  CAS  Google Scholar 

  30. S. H. Zhang, N. Li, C. M. Ge, et al., Dalton Trans. 40, 3000 (2011). https://doi.org/10.1039/c0dt01498b

    Article  CAS  Google Scholar 

  31. L. Yang, S. H. Zhang, W. Wang, et al., Polyhedron 74, 49 (2014). https://doi.org/10.1016/j.poly.2014.02.024

    Article  CAS  Google Scholar 

  32. A. Beheshti, W. Clegg, V. Nobakht, et al., Cryst. Growth Des. 13, 1023 (2013). https://doi.org/10.1021/cg301106g

    Article  CAS  Google Scholar 

  33. S. Toki, J. Che, L. X. Rong, et al., Macromolecules 46, 5238 (2013). https://doi.org/10.1021/ma400504k

    Article  CAS  Google Scholar 

  34. X. G. Yang, Z. M. Zhai, X. M. Lu, et al., Dalton Trans. 48, 10785 (2019). https://doi.org/10.1039/c9dt02178g

    Article  CAS  Google Scholar 

  35. L. Y. Xin, G. Z. Liu, X. L. Li, et al., Cryst. Growth Des. 12, 147 (2012). https://doi.org/10.1021/cg200903k

    Article  CAS  Google Scholar 

  36. L. F. Ma, X. Q. Li, L. Y. Wang, et al., CrystEngComm 13, 4625 (2011). https://doi.org/10.1039/c1ce05308f

    Article  CAS  Google Scholar 

  37. S. E. Korolenko, V. V. Avdeeva, E. A. Malinina, N. T. Kuznetsov, Russ. J. Inorg. Chem. 66, 1350 (2021). https://doi.org/10.1134/S0036023621090047

    Article  CAS  Google Scholar 

  38. M. A. Uvarova, S. E. Nefedov, Russ. J. Inorg. Chem. 66, 1837 (2021). https://doi.org/10.1134/S0036023621120202

    Article  CAS  Google Scholar 

  39. V. V. Avdeeva, S. E. Korolenko, E. A. Malinina, et al., Russ. J. Inorg. Chem. 92, 393 (2022). https://doi.org/10.1134/S1070363222030070

    Article  CAS  Google Scholar 

  40. Y. B. Ivanova, T. V. Shorokhova, Y. V. Khrushkova, Russ. J. Inorg. Chem. 92, 1290 (2022). https://doi.org/10.1134/S1070363222070180

    Article  CAS  Google Scholar 

  41. M. S. Milutka, A. S. Burlov, V. G. Vlasenko, et al., Russ. J. Inorg. Chem. 92, 1297 (2022). https://doi.org/10.1134/S1070363222070192

    Article  CAS  Google Scholar 

  42. S. H. Zhang, L. F. Ma, H. H. Zou, et al., Dalton Trans. 40, 11402 (2011). https://doi.org/10.1039/c1dt10517e

    Article  CAS  Google Scholar 

  43. Y. Zhao, L. L. Zhai, J. Fan, et al., Polyhedron 46, 16 (2012). https://doi.org/10.1016/j.poly.2012.07.079

    Article  CAS  Google Scholar 

  44. S. H. Zhang, R. X. Zhao, G. Li, et al., RSC Adv. 4, 54837 (2014). https://doi.org/10.1039/c4ra09687h

    Article  CAS  Google Scholar 

  45. L. S. Long, CrystEngComm 12, 1354 (2010). https://doi.org/10.1039/b921146b

    Article  CAS  Google Scholar 

  46. S. M. Zhang, Q. S. Deng, H. Y. Zhang, et al., J. Cluster Sci. 31, 685 (2020). https://doi.org/10.1007/s10876-019-01675-9

    Article  CAS  Google Scholar 

  47. G. M. Sheldrick, Acta Cryst. C71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  48. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Cryst. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  49. J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Acta Cryst. B60, 627 (2004). https://doi.org/10.1107/S0108768104020300

    Article  CAS  Google Scholar 

  50. F. H. Allen, O. Kennard, D. G. Watson, et al., J. Chem. Soc. Perkin Trans. 2. S1 (1987). https://doi.org/10.1039/P298700000S1

    Article  Google Scholar 

  51. C. Agnew, K. B. Dillon, A. E. Goeta, et al., Inorg. Chim. Acta 362, 4260 (2009). https://doi.org/10.1016/j.ica.2009.05.063

    Article  CAS  Google Scholar 

  52. S. K. Patel, R.N. Patel, Y. Singh, et al., Polyhedron. 161, 198 (2019). https://doi.org/10.1016/j.poly.2019.01.006

    Article  CAS  Google Scholar 

  53. S. H. Zhang, C. Feng, J. Mol. Struct. 977, 62 (2010). https://doi.org/10.1016/j.molstruc.2010.05.010

    Article  CAS  Google Scholar 

  54. G. H. Wei, J. Yang, J. F. Ma, et al., Dalton Trans. 23, 3080 (2008). https://doi.org/10.1039/b716657e

    Article  CAS  Google Scholar 

  55. S. T. Wang, X. Zheng, S. H. Zhang, et al., CrystEngComm 23, 4059 (2021). https://doi.org/10.1039/d1ce00323b

    Article  CAS  Google Scholar 

  56. S. H. Zhang, J. M. Wang, H. Y. Zhang, et al., Dalton Trans. 46, 410 (2017). https://doi.org/10.1039/c6dt04059d

    Article  CAS  Google Scholar 

  57. S. E. Korolenko, K. P. Zhuravlev, V. I. Tsaryuk, et al., J. Lumin. 237, 118156 (2021). https://doi.org/10.1016/j.jlumin.2021.118156

    Article  CAS  Google Scholar 

  58. P. Huo, T. Chen, J. L. Hou, et al., Inorg. Chem. 55, 6496 (2016). https://doi.org/10.1021/acs.inorgchem.6b00571

    Article  CAS  Google Scholar 

  59. C. N. Tsai, S. Mazumder, X. Z. Zhang, et al., Inorg. Chem. 55, 7341 (2016). https://doi.org/10.1021/acs.inorgchem.6b00374

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (contract no. 21861014) and Talent Introduction Project of Guangdong University of Petrochemical Technology (no. 2020rc033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Hua Zhang or Zhenguang Hu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao Zhou, Zhang, H., Zhang, SH. et al. Room Temperature Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Fluorescence Properties of One Novel Cubane Zinc Cluster Based on 1-{2-Hydroxy-3-[(2-Hydroxy-3-Methoxy-Benzylidene)-Amino]-Phenyl}-Ethanone. Russ. J. Inorg. Chem. 67 (Suppl 1), S35–S41 (2022). https://doi.org/10.1134/S0036023622601817

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601817

Keywords:

Navigation