Skip to main content
Log in

Synthesis and Thermal Stability of Manganese(III) Acetylacetonate

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The dependence of the stability of Mn(C5H7O2)3 modifications on the properties of the solvent chosen for recrystallization is considered. Low-polarity solvents with a low dielectric permittivity enhance intermolecular interactions, which leads to the formation of the β-Mn(C5H7O2)3 modification during the synthesis of Mn(C5H7O2)3 from chloroform solutions. The use of mixtures of chloroform with petroleum ether makes it possible to control supersaturation, the rate of formation, and growth of phase nuclei due to the evaporation of chloroform under isothermal conditions. The use of polar solvents for recrystallization favors the formation of γ-Mn(C5H7O2)3. The composition of the thermal decomposition products of β‑Mn(C5H7O2)3 in a dry inert atmosphere has been determined by X-ray powder diffraction, IR spectroscopy, thermogravimetric and mass spectral analysis, and differential scanning calorimetry. In the temperature range 140–240°C, β-Mn(C5H7O2)3 melts to form Mn(C5H7O2)2. At temperatures of 500–550°С, Mn(C5H7O2)2 decomposes to a mixture of MnO, Mn3O4, Mn2O3, and carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. B. Snider, Encyclopedia of Reagents for Organic Synthesis (John Wiley & Sons Ltd, 2001). https://doi.org/10.1002/047084289X.rm022

    Book  Google Scholar 

  2. H. T. Ban, T. Kase, and M. Murata, J. Polym. Sci., Part A 39, 3733 (2001). https://doi.org/10.1002/pola.10021

    Article  CAS  Google Scholar 

  3. R. Gorkum, E. Bouwman, and J. Reedijk, Inorg. Chem. 43, 2456 (2004). https://doi.org/10.1021/ic0354217

    Article  CAS  PubMed  Google Scholar 

  4. A. E. S. Sleightholme, A. A. Shinkle, Q. Liu, et al., J. Power Sources 196, 5742 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.020

    Article  CAS  Google Scholar 

  5. Y. J. Park, J. G. Kim, M. K. Kim, et al., Solid State Ionics 130, 203 (2000). https://doi.org/10.1016/S0167-2738(00)00551-8

    Article  CAS  Google Scholar 

  6. J. P. Fackler and A. Avdeef, Inorg. Chem. 13, 1864 (1974). https://doi.org/10.1021/ic50138a016

    Article  CAS  Google Scholar 

  7. B. R. Stults, R. S. Marianelli, and V. W. Day, Inorg. Chem. 18, 1853 (1979). https://doi.org/10.1021/ic50197a028

    Article  CAS  Google Scholar 

  8. S. Geremia and N. Demitri, J. Chem. Educ. 82, 460 (2005). https://doi.org/10.1021/ed082p460

    Article  CAS  Google Scholar 

  9. E. Arslan, R. A. Lalancette, and I. Bernal, Struct. Chem. 28, 201 (2017). https://doi.org/10.1007/s11224-016-0864-0

    Article  CAS  Google Scholar 

  10. M. N. Bhattacharjee, M. K. Chaudhuri, and D. T. Khathing, J. Chem. Soc., Dalton Trans. 3, 669 (1982). https://doi.org/10.1039/DT9820000669

    Article  Google Scholar 

  11. G. Kunstle, Patent FRG 2420775, 1974.

  12. R. G. Charles and B. E. Bryant, Inorg. Synt. 183 (1963). https://doi.org/10.1002/9780470132388.ch49

  13. G. H. Cartledge, US Patent 2556316, 1951.

  14. W. Linke and G. Zirker, FRG Patent 1039056B, 1957.

  15. F. Gach, C.R. Acad. Sci. Ser. IIc: Chim. 98 (1900).

  16. V. I. Grachev, S. V. Noskov, and I. Yu. Filatov, RF Patent 2277529C1, Byull. Izobret. no. 16, 2006.

  17. J. C. Matthews and L. L. Wood, US Patent 474464, 1969.

  18. M. A. Siddiqi, R. A. Siddiqui, and B. Atakan, Surf. Coat. Tech. 201, 9055 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.036

    Article  CAS  Google Scholar 

  19. I. C. McNeill and J. J. Liggat, Polym. Degrad. Stab. 37, 25 (1992). https://doi.org/10.1016/0141-3910(92)90088-M

    Article  CAS  Google Scholar 

  20. I. V. Babich, L. A. Davydenko, L. F. Sharanda, et al., Thermochim. Acta 456, 145 (2007).https://doi.org/10.1016/j.tca.2007.02.010

  21. C. Reichert, G. M. Bancroft, and J. B. Westmore, Can. J. Chem. 48, 1362 (1970). https://doi.org/10.1139/v70-225

    Article  CAS  Google Scholar 

  22. C. G. Macdonald and J. S. Shannon, Aust. J. Chem. 19, 1545 (1966). https://doi.org/10.1071/CH9661545

    Article  CAS  Google Scholar 

  23. New Handbook of Chemist and Technologist, Ed. by A. V. Moskvina (St. Petersburg, 2006) [in Russian].

    Google Scholar 

  24. V. P. Zlomanov, R. S. Eshmakov, and I. V. Prolubshchikov, Condens. Matter Interphases 24, 29 (2022).

    CAS  Google Scholar 

  25. B. N. Tarasevich, IR Spectra of the Main Classes of Organic Compounds. Reference Materials (Moscow, 2012) [in Russian].

    Google Scholar 

  26. I. Diaz-Acosta, J. Baker, J. F. Hinton, et al., Spectrochim. Acta 59 Part A, 363 (2003). https://doi.org/10.1016/S1386-1425(02)00166-X

  27. K. E. Lawson, Spectrochim. Acta 17, 248 (1961). https://doi.org/10.1016/0371-1951(61)80071-4

    Article  CAS  Google Scholar 

  28. S. Pinchas, B. L. Silver, and I. Laulicht, J. Chem. Phys. 46, 1506 (1967). https://doi.org/10.1063/1.1840881

    Article  CAS  Google Scholar 

  29. A. S. Alikhanyan, I. P. Malkerova, V. G. Sevast’yanov, et al., Vysokochist. Veshch. 3, 112 (1987).

    Google Scholar 

  30. P. P. Semyannikov, I. K. Igumenov, S. V. Trubin, and I. P. Asanov, J. Phys. IV. France 11, 995 (2001).

  31. D. Jarosch, Mineral. Petrol. 37, 15 (1987). https://doi.org/10.1007/BF01163155

    Article  CAS  Google Scholar 

  32. W. Hase, Phys. Status Solidi B 3, K446 (1963). https://doi.org/10.1002/pssb.19630031225

  33. A. H. Jay and K. W. Andrews, J. Iron Steel I 152, 15 (1945).

    Google Scholar 

  34. O. Hassel and H. Mark, Z. Phys. 25, 317 (1924).

    Article  CAS  Google Scholar 

  35. S. Shibata, S. Onuma, and H. Inoue, Inorg. Chem. 24, 1723 (1985). https://doi.org/10.1021/ic00205a028

    Article  CAS  Google Scholar 

  36. M. van Tran, A. T. Ha, and P. M. L. Le, J. Nanomater. 16, 609273 (2015). https://doi.org/10.1155/2015/609273

    Article  CAS  Google Scholar 

  37. E. W. Lemmon, M. O. McLinden, D. G. Friend, et al., National Institute of Standards and Technology (Gaithersburg, 2011).

  38. Z. Wu, K. Yu, Y. Huang, et al., Chem. Cent. J. 1, 8 (2007). https://doi.org/10.1186/1752-153X-1-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Sharrouf, R. Awad, M. Roumie, et al., Mater. Sci. Appl. 6, 850 (2015).

    CAS  Google Scholar 

  40. M. Zheng, H. Zhang, X. Gong, et al., Nanoscale Res. Lett. 8, 166 (2013). https://doi.org/10.1186/1556-276X-8-166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to prof., Dr. Sci. A.V. Yatsenko for X-ray powder diffraction analysis of single crystal and Cand. Sci. T.B. Shatalova for performing the TG procedure, MS analysis, and DSC (Department of Chemistry, Moscow State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Eshmakov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshmakov, R.S., Prolubshchikov, I.V. & Zlomanov, V.P. Synthesis and Thermal Stability of Manganese(III) Acetylacetonate. Russ. J. Inorg. Chem. 68, 50–59 (2023). https://doi.org/10.1134/S0036023622601799

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601799

Keywords:

Navigation