Skip to main content
Log in

Nucleophilic Addition of Polyfunctional Amines to Acetonitrile Derivatives of closo-Borate Anions [BnHn – 1NCCH3] (n = 10, 12)

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Methods for the preparation of new amidine-closo-borates based on the processes of nucleophilic addition of bifunctional amines containing free functional groups –NH2, –SH to nitrile derivatives of the closo-decaborate and closo-dodecaborate anions have been developed. These derivatives can potentially act as agents for 10B-NCT and serve as starting compounds for further preparation of borylated derivatives by organic chemistry methods. The structures of the obtained compounds have been confirmed by 1H, 11B, 13C NMR spectroscopies and ESI mass spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. N. Klyukin, A. V. Kolbunova, A. S. Novikov, et al., Int. J. Mol. Sci. 23, 4190 (2022). https://doi.org/10.3390/ijms23084190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. A. Druzina, N. E. Grammatikova, O. B. Zhidkova, et al., Molecules 27, 2920 (2022). https://doi.org/10.3390/molecules27092920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. V. V. Avdeeva, A. V. Vologzhanina, S. E. Korolenko, et al., Polyhedron 223, 115932 (2022). https://doi.org/10.1016/j.poly.2022.115932

    Article  CAS  Google Scholar 

  4. X. Zhao, Y. Fu, C. Yao, et al., ChemCatChem 11, 2362 (2019). https://doi.org/10.1002/cctc.201900281

    Article  CAS  Google Scholar 

  5. Z. Wang, Z. Wang, X. Ma, et al., Int. J. Hydrogen Energy 46, 30750 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.196

    Article  CAS  Google Scholar 

  6. L. Wang, W. Sun, S. Duttwyler, et al., J. Solid State Chem. 299 (2021). https://doi.org/10.1016/j.jssc.2021.122167

  7. Z. Wang, Y. Liu, H. Zhang, et al., J. Colloid Interface Sci. 566, 135 (2020). https://doi.org/10.1016/j.jcis.2020.01.047

    Article  CAS  PubMed  Google Scholar 

  8. M. H. Rao and K. Muralidharan, Polyhedron 115, 105 (2016). https://doi.org/10.1016/j.poly.2016.03.062

    Article  CAS  Google Scholar 

  9. J. Derdziuk, P. J. Malinowski, and T. Jaroń, Int. J. Hydrogen Energy 44, 27030 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.158

    Article  CAS  Google Scholar 

  10. H. Hagemann, Molecules 26, 7425 (2021).https://doi.org/10.3390/molecules26247425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Sharon, M. Afri, S. Mitlin, et al., Polyhedron 157, 71 (2019). https://doi.org/10.1016/j.poly.2018.09.055

    Article  CAS  Google Scholar 

  12. Y. Sun, J. Zhang, Y. Zhang, et al., Chem.-Eur. J. 24, 10364 (2018). https://doi.org/10.1002/chem.201801602

    Article  CAS  PubMed  Google Scholar 

  13. D. Rózycka, Z. J. Leśnikowski, and A. B. Olejniczak, J. Organomet. Chem. 881, 19 (2019). https://doi.org/10.1016/j.jorganchem.2018.11.037

    Article  CAS  Google Scholar 

  14. V. V. Avdeeva, T. M. Garaev, N. V. Breslav, et al., J. Biol. Inorg. Chem. 67, 28 (2022).https://doi.org/10.1007/s00775-022-01937-4

  15. E. S. Turyshev, A. V. Kopytin, K. Yu. Zhizhin, et al., Talanta 241, 123239 (2022). https://doi.org/10.1016/j.talanta.2022.123239

    Article  CAS  PubMed  Google Scholar 

  16. V. V. Avdeeva, T. M. Garaev, E. A. Malinina, et al., Russ. J. Inorg. Chem. 67, 28 (2022). https://doi.org/10.1134/S0036023622010028

    Article  CAS  Google Scholar 

  17. H. Koganei, S. Tachikawa, M. E. El-Zaria, et al., New J. Chem. 39, 6388 (2015). https://doi.org/10.1039/C5NJ00856E

    Article  CAS  Google Scholar 

  18. Y. Zhang, Y. Sun, T. Wang, et al., Molecules 23, 3137 (2018). https://doi.org/10.3390/molecules23123137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Ishii, S. Sato, H. Asami, et al., Org. Biomol. Chem. 17, 5496 (2019). https://doi.org/10.1039/C9OB00584F

    Article  CAS  PubMed  Google Scholar 

  20. A. P. Zhdanov, I. N. Polyakova, G. A. Razgonyaeva, et al., Russ. J. Inorg. Chem. 56, 847 (2011). https://doi.org/10.1134/S003602361106026X

    Article  CAS  Google Scholar 

  21. A. L. Mindich, N. A. Bokach, M. L. Kuznetsov, et al., Organometallics 32, 6576 (2013). https://doi.org/10.1021/om400892x

    Article  CAS  Google Scholar 

  22. D. S. Bolotin, V. K. Burianova, A. S. Novikov, et al., Organometallics 35, 3612 (2016). https://doi.org/10.1021/acs.organomet.6b00678

    Article  CAS  Google Scholar 

  23. A. P. Zhdanov, I. N. Klyukin, A. Yu. Bykov, et al., Polyhedron 123, 176 (2017). https://doi.org/10.1016/j.poly.2016.11.035

    Article  CAS  Google Scholar 

  24. A. P. Zhdanov, A. V. Nelyubin, I. N. Klyukin, et al., Russ. J. Inorg. Chem. 64, 841 (2019). https://doi.org/10.1134/S0036023619070180

  25. V. K. Burianova, D. S. Bolotin, A. S. Novikov, et al., Inorg. Chim. Acta 482, 838 (2018). https://doi.org/10.1016/j.ica.2018.07.038

    Article  CAS  Google Scholar 

  26. V. V. Voinova, N. A. Selivanov, I. V. Plyushchenko, et al., Molecules 26, 248 (2021). https://doi.org/10.3390/molecules26010248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Y. Stogniy, S. A. Erokhina, I. B. Sivaev, et al., Phosphorus Sulfur Silicon Relat. Elem. 194, 983 (2019). https://doi.org/10.1080/10426507.2019.1631312

    Article  CAS  Google Scholar 

  28. M. Y. Stogniy, S. A. Erokhina, K. Y. Suponitsky, et al., New J. Chem. 42, 17958 (2018). https://doi.org/10.1039/c8nj04192j

    Article  CAS  Google Scholar 

  29. M. Y. Stogniy, S. A. Erokhina, A. A. Anisimov, et al., Polyhedron 174, 114170 (2019). https://doi.org/10.1016/j.poly.2019.114170

    Article  CAS  Google Scholar 

  30. E. V. Bogdanova, M. Y. Stogniy, L. A. Chekulaeva, et al., New J. Chem. 44, 15836 (2020). https://doi.org/10.1039/d0nj03017a

    Article  CAS  Google Scholar 

  31. A. V. Nelyubin, N. A. Selivanov, A. Yu. Bykov, et al., Int. J. Mol. Sci. 22, 13391 (2021). https://doi.org/10.3390/ijms222413391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. V. Nelyubin, I. N. Klyukin, A. P. Zhdanov, et al., Russ. J. Inorg. Chem. 64, 1750 (2019). https://doi.org/10.1134/S0036023619140043

    Article  CAS  Google Scholar 

  33. A. V. Nelyubin, I. N. Klyukin, A. P. Zhdanov, et al., Russ. J. Inorg. Chem. 64, 1499 (2019). https://doi.org/10.1134/S003602361912012X

    Article  CAS  Google Scholar 

  34. J. Laskova, I. Ananiev, I. Kosenko, et al., Dalton Trans. 51, 3051 (2022). https://doi.org/10.1039/D1DT04174F

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Center for Collective Use of the Physical Methods of Investigation of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, which operates with the support of the State Assignment of the Kurnakov Institute RAS in the field of fundamental scientific research.

Funding

The work was supported by the Russian Science Foundation (grant no. 21-73-10292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zhdanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelyubin, A.V., Sokolov, M.S., Selivanov, N.A. et al. Nucleophilic Addition of Polyfunctional Amines to Acetonitrile Derivatives of closo-Borate Anions [BnHn – 1NCCH3] (n = 10, 12). Russ. J. Inorg. Chem. 67, 1751–1755 (2022). https://doi.org/10.1134/S003602362260109X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362260109X

Keywords:

Navigation