Skip to main content
Log in

Effect of Gd Dopant on Visible-Light-Driven Photocatalytic Properties of CeO2 Nanowires Synthesized Microwave-Assisted Hydrothermal Method

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Gd-doped CeO2 nanowires were synthesized by microwave-assisted hydrothermal method at 120°C for 30 min. The X-ray diffraction patterns of CeO2 with and without Gd dopant were indexed to the pure phase of cubic CeO2 structure with no detection of a secondary phase. The transmission electron microscopic images of CeO2 and Gd-doped CeO2 show uniform nanowires with aspect ratio of 10–40. The CeO2 and Gd-doped CeO2 nanowires have the prefer orientation growth along the [111] direction. The photocatalytic activities of CeO2 nanowires with and without Gd dopant were evaluated through the degradation of rhodamine B (RhB) under visible light irradiation. The UV-visible light absorption of RhB solution was decreased to the lowest by the photocatalysis of 3% Gd-doped CeO2 nanowires with the highest photocatalytic activity of 99.51% and 1.71 times of pure CeO2 nanowires within 180 min. A possible photocatalytic mechanism of the Gd-doped CeO2 nanowires was also studied and proposed in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Khataee, R. D. C. Soltani, A. Karimi, and S. W. Joo, Ultrason. Sonochem. 23, 219 (2015). https://doi.org/10.1016/j.ultsonch.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  2. P. Liu, L. Xing, H. Lin, et al., Sci. Bul. 62, 931 (2017). https://doi.org/10.1016/j.scib.2017.05.031

    Article  CAS  Google Scholar 

  3. D. Channei, B. Inceesungvorn, N. Wetchakun, et al., Sci. Sep. 4, 5757 (2014). https://doi.org/10.1038/srep05757

  4. Z. Fan, F. Meng, M. Zhang, et al., Appl. Surf. Sci. 360, 298 (2016). https://doi.org/10.1016/j.apsusc.2015.11.021

    Article  CAS  Google Scholar 

  5. L. Wang and F. Meng, Mater. Res. Bull. 48, 3492 (2013). https://doi.org/10.1016/j.materresbull.2013.05.036

    Article  CAS  Google Scholar 

  6. Z. Fan, F. Meng, J. Gong, et al., Mater. Lett. 175, 36 (2016). https://doi.org/10.1016/j.matlet.2016.03.136

    Article  CAS  Google Scholar 

  7. E. Kusmierek, Catalysts 10, 1435 (2020). https://doi.org/10.3390/catal10121435

    Article  CAS  Google Scholar 

  8. D. Toloman, A. Popa, M. Stefan, et al., Mater. Sci. Semicond. Process. 71, 61 (2017). https://doi.org/10.1016/j.mssp.2017.07.004

    Article  CAS  Google Scholar 

  9. A. Phuruangrat, T. Klangnoi, P. Patiphatpanya, et al., Optik 212, 164674 (2020). https://doi.org/10.1016/j.ijleo.2020.164674

    Article  CAS  Google Scholar 

  10. L. Chen, L. Tian, X. Zhao, et al., Arabian J. Chem. 13, 4404 (2020). https://doi.org/10.1016/j.arabjc.2019.08.011

    Article  CAS  Google Scholar 

  11. A. S. Mokrushin, I. A. Nagornov, A. A. Averin, et al., Russ. J. Inorg. Chem. 66, 638 (2021). https://doi.org/10.1134/S0036023621050119

    Article  CAS  Google Scholar 

  12. I. V. Kolesnik, A. B. Shcherbakov, T. O. Kozlova, et al., Russ. J. Inorg. Chem. 65, 960 (2020). https://doi.org/10.1134/S0036023620070128

    Article  CAS  Google Scholar 

  13. F. Meng, L. Wang, and J. Cui, J. Alloy. Compd. 556, 102 (2013). https://doi.org/10.1016/j.jallcom.2012.12.096

    Article  CAS  Google Scholar 

  14. E. Liu, Y. Du, X. Bai, et al., Arabian J. Chem. 13, 3836, 13 (2020). https://doi.org/10.1016/j.arabjc.2019.02.001

    Article  CAS  Google Scholar 

  15. Y. Lin, D. Pan, and H. Luo, Mater. Sci. Semicond. Process. 121, 105453 (2021). https://doi.org/10.1016/j.mssp.2020.105453

    Article  CAS  Google Scholar 

  16. S. Mousavi, F. Shahraki, M. Aliabadi, et al., Appl. Surf. Sci. 479, 608 (2019). https://doi.org/10.1016/j.apsusc.2019.02.119

    Article  CAS  Google Scholar 

  17. F. Meng and Z. Sun, Appl. Surf. Sci. 255, 6715 (2009). https://doi.org/10.1016/j.apsusc.2009.02.076

    Article  CAS  Google Scholar 

  18. P. Zhang, B. Liu, Y. Li, et al., Russ. J. Inorg. Chem. 66, 2036 (2021). https://doi.org/10.1134/S0036023621140096

    Article  CAS  Google Scholar 

  19. R. A. C. Amoresi, R. C. Oliveira, N. L. Marana, et al., ACS Appl. Nano Mater. 2, 6513 (2019). https://doi.org/10.1021/acsanm.9b01452

    Article  CAS  Google Scholar 

  20. Z. Cui, H. Zhou, G. Wang, et al., New J. Chem. 43, 7355 (2019). https://doi.org/10.1039/C9NJ01098J

    Article  CAS  Google Scholar 

  21. Z. Fandi, N. Ameur, F. T. Brahimi, et al., J. Environ. Chem. Eng. 8, 104346 (2020). https://doi.org/10.1016/j.jece.2020.104346

    Article  CAS  Google Scholar 

  22. X. J. Wen, C. G. Niu, M. Ruan, et al., J. Colloid Interface Sci. 497, 368 (2017). https://doi.org/10.1016/j.jcis.2017.03.029

    Article  CAS  PubMed  Google Scholar 

  23. M. Ebadi, O. Amiri, and M. Sabet, Sep. Purif. Technol. 190, 117 (2018). https://doi.org/10.1016/j.seppur.2017.08.008

    Article  CAS  Google Scholar 

  24. K. Saravanakumar, R. Karthik, S. M. Chen, et al., J. Colloid Interface Sci. 504, 514 (2017). https://doi.org/10.1016/j.jcis.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  25. S. Selvaraj, M.K. Mohan, M. Navaneethan, et al., Mater. Sci. Semicond. Process. 103, 104622 (2019). https://doi.org/10.1016/j.mssp.2019.104622

    Article  CAS  Google Scholar 

  26. M. Wang, X. Xu, L. Lin, and D. He, Prog. Nat. Sci. 25, 6 (2015). https://doi.org/10.1016/j.pnsc.2015.01.002

    Article  CAS  Google Scholar 

  27. A.M. Al-Hamdi, M. Sillanpää, and J. Dutta, J. Rare Earths 33, 1275 (2015). https://doi.org/10.1016/S1002-0721(14)60557-3

    Article  CAS  Google Scholar 

  28. Powder Diffraction File, JCPDS-ICDD, 12 Campus Blvd., Newtown Square, PA 19073-3273, U.S.A. (2001).

  29. S. Soni, N. Chouhan, R. K. Meena, et al., Glob. Chall. 3, 1800090 (2019). https://doi.org/10.1002/gch2.201800090

    Article  PubMed  PubMed Central  Google Scholar 

  30. A. H. Wako, F. B. Dejene, and H. C. Swart, Luminescence 31, 1313 (2016). https://doi.org/10.1002/bio.3108

    Article  CAS  PubMed  Google Scholar 

  31. Y. Hong, J. Li, H. Bai, et al., J. Adv. Ceram. 9, 641 (2020). https://doi.org/10.1007/s40145-020-0398-1

    Article  CAS  Google Scholar 

  32. D. Loche, L.M. Morgan, A. Casu, et al., RSC Adv. 9, 6745 (2019). https://doi.org/10.1039/C8RA09766F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G. Vinothkumar, S. Rengaraj, P. Arunkumar, et al., J. Phys. Chem. C 123, 541 (2019). https://doi.org/10.1021/acs.jpcc.8b10108

    Article  CAS  Google Scholar 

  34. A. Phuruangrat, P. Prapassornwattana, S. Thongtem, and T. Thongtem, Russ. J. Inorg. Chem. 66, 613 (2021). https://doi.org/10.1134/S0036023621040185

    Article  CAS  Google Scholar 

  35. A. Phuruangrat, T. Sakhon, B. Kuntalue, S. Thongtem, and T. Thongtem, Russ. J. Inorg. Chem. 66, 1829 (2021). https://doi.org/10.1134/S0036023621120135

    Article  Google Scholar 

  36. A. Phuruangrat, B. Kuntalue, S. Thongtem, and T. Thongtem, Russ. J. Inorg. Chem. 66, 332 (2021). https://doi.org/10.1134/S0036023621030128

    Article  CAS  Google Scholar 

  37. P. Intaphong, A. Phuruangrat, H. Yeebu, et al., Russ. J. Inorg. Chem. 66, 2123 (2021). https://doi.org/10.1134/S0036023621140047

    Article  CAS  Google Scholar 

  38. P. L. Meena, K. Sreenivas, and R. Kumar, Appl. Sci. Lett. 1, 110 (2015). https://doi.org/10.17571/appslett.2015.01025

    Article  Google Scholar 

  39. D. Jampaiah, P. Venkataswamy, Vi. E. Coyle, et al., RSC Adv. 6, 80541 (2016). https://doi.org/10.1039/c6ra13577c

  40. M. Farahmandjou and M. Zarinkamar, J. Ultrafine Grained Nanostruct. Mater. 48, 5 (2015). https://doi.org/10.3390/s18061878

    Article  CAS  Google Scholar 

  41. T. Ates, J. Aust. Ceram. Soc. 57, 615 (2021). https://doi.org/10.1007/s41779-021-00565-6

    Article  CAS  Google Scholar 

  42. X. Qian, Q. Qu, L. Li, et al., Sensors 18, 1878 (2018). https://doi.org/10.3390/s18061878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J. Ma, Y. Lou, Y. Cai, et al., Catal. Sci. Technol. 8, 2564 (2018). https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  44. V. V. Avdeeva, A. V. Vologzhanina, E. A. Malinina, and N. T. Kuznetsov, Crystals 9, 330 (2019). https://doi.org/10.3390/cryst9070330

    Article  CAS  Google Scholar 

  45. A. Phuruangrat, P. Keereesaensuk, K. Karthik, et al., J. Inorg. Organomet. Polym. Mater. 30, 322 (2020). https://doi.org/10.1007/s10904-019-01190-4

    Article  CAS  Google Scholar 

  46. P. Intaphong, A. Phuruangrat, N. Ekthammathat, et al., Dig. J. Nanomater. Bios. 13, 1097 (2018).

    Google Scholar 

  47. M. I. Ghouri, E. Ahmed, N. R. Khalid, et al., J. Ovonic Res. 10, 89 (2014).

    CAS  Google Scholar 

  48. A. Khataee, A. Karimi, A. Hasanzadeh, and S.W. Joo, Ultrason. Sonochem. 39, 344 (2017). https://doi.org/10.1016/j.ultsonch.2017.04.022

    Article  CAS  PubMed  Google Scholar 

  49. M.S. Khan, M. Khalid, M.S. Ahmad, et al., Res. Chem. Intermed. 56, 2985 (2020). https://doi.org/10.1007/s11164-020-04127-6

    Article  CAS  Google Scholar 

  50. L. Liu, S. Yao, B. Liang, and W. Li, Res. Chem. Intermed. 45, 893 (2019). https://doi.org/10.1007/s11164-018-3650-3

    Article  CAS  Google Scholar 

  51. N. Duraisamy, K. Kandiah, R. Rajendran, et al., Res. Chem. Intermed. 44, 5653 (2018). https://doi.org/10.1007/s11164-018-3446-5

    Article  CAS  Google Scholar 

  52. Y. Wei, H. Li, R. Zhang, et al., Res. Chem. Intermed. 44, 7107 (2018). https://doi.org/10.1007/s11164-018-3545-3

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are extremely grateful to the Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and the Center of Excellence in Materials Science and Technology, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Somchai Thongtem.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phattranit Dumrongrojthanath, Phuruangrat, A., Sakhon, T. et al. Effect of Gd Dopant on Visible-Light-Driven Photocatalytic Properties of CeO2 Nanowires Synthesized Microwave-Assisted Hydrothermal Method. Russ. J. Inorg. Chem. 67, 1880–1887 (2022). https://doi.org/10.1134/S0036023622600757

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622600757

Keywords:

Navigation