Skip to main content
Log in

Lithiation of a Silicon Oxide Cluster Adsorbed onto Graphene Oxide: Quantum-Chemical Simulation

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The processes of adsorption of a silicon oxide cluster onto the surface of reduced graphene oxide (GO) have been considered. The calculations have been performed at the PBE/PAW, ωB97XD/6-31G(d,p), and ωB97XD/6-31G(d,p)/6-311G(d,p)BSSE levels with inclusion of periodic conditions and in the cluster approximation. Upon the formation of GO, graphene sheets are distorted in the vicinity of bonding with oxygen. It is energetically favorable for the SinOx cluster to be located on the concave side of the surface (opposite of adsorbed oxygen). This stabilizes the position of the clusters and prevents the “drift” of silicon oxide during lithiation. The lithiation involves oxygen and silicon atoms. The lithium conductivity will depend on the Li/O and Li/Oc ratios, where O and Oc are the numbers of oxygen atoms on the silicon oxide and graphene oxide surfaces, respectively. Lithium migration occurs through oxygen atoms bound to silicon in the case of a small ratio Li/O ≤ 1/2 and captures Oc oxygen atoms covering graphene in the case of Li/O ≥ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Kang and G. Ceder, Nature 458, 190 (2009). https://doi.org/10.1038/nature07853

    Article  CAS  PubMed  Google Scholar 

  2. H. Zhang and P. V. Braun, Nano Lett. 12, 2778 (2012). https://doi.org/10.1021/nl204551m

    Article  CAS  PubMed  Google Scholar 

  3. L. Qu, Y. Liu, J. -B. Baek, and L. Dai, ACS Nano 4, 1321 (2010). https://doi.org/10.1021/nn901850u

    Article  CAS  PubMed  Google Scholar 

  4. M. Giovanni, H. L. Poh, A. Ambrosi, et al., Nanoscale 4, 5002 (2012). https://doi.org/10.1039/C2NR31077E

    Article  CAS  PubMed  Google Scholar 

  5. Y. Tang, Z. Yang, and X. Dai, Phys. Chem. Chem. Phys. 14, 16566 (2012). https://doi.org/10.1039/C2CP41441D

    Article  CAS  PubMed  Google Scholar 

  6. Mehdi D. Esrafili, Fahimeh Sharifi, and Parisa Nematollahi, J. Mol. Graphics Model. 69, 8 (2016). https://doi.org/10.1016/j.jmgm.2016.08.005

    Article  CAS  Google Scholar 

  7. T. Wehling, K. Novoselov, S. Morozov, et al., Nano Lett. 8, 173 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. B. Guo, L. Fang, B. Zhang, and J. R. Gong, Insciences J. 1, 80 (2011). https://doi.org/10.5640/insc.010280

    Article  CAS  Google Scholar 

  9. Y. Tang, J. Zhou, Z. Shen, et al., RSC Adv. 6, 93985 (2016). https://doi.org/10.1039/c6ra14476d

    Article  CAS  Google Scholar 

  10. Y. Tang, W. Chen, Z. Shen, et al., Carbon 111, 448 (2017). https://doi.org/10.1016/j.carbon.2016.10.028

    Article  CAS  Google Scholar 

  11. Y. Tang, Z. Liu, Z. Shen, et al., Sens. Actuators B: Chem. 238, 182 (2017). https://doi.org/10.1016/j.snb.2016.07.039

    Article  CAS  Google Scholar 

  12. Y. Tang, Z. Shen, Y. Ma, et al., Mater. Chem. Phys. 207, 11 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.048

    Article  CAS  Google Scholar 

  13. Y. Tang, M. Zhang, W. Chen, et al., J. Phys. Chem. Solids 121, 247 (2018). https://doi.org/10.1016/j.jpcs.2018.05.037

    Article  CAS  Google Scholar 

  14. Y. Tang, W. Chen, Z. Shen, et al., Phys. Chem. Chem. Phys. 20, 2284 (2018). https://doi.org/10.1039/C7CP07397F

    Article  CAS  PubMed  Google Scholar 

  15. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008). https://doi.org/10.1038/nnano.2008.83

    Article  CAS  PubMed  Google Scholar 

  16. G. Lu, L. E. Ocola, and J. Chen, Nanotecnology 20, 445502 (2009). https://doi.org/10.1088/0957-4484/20/44/445502

    Article  CAS  Google Scholar 

  17. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010). https://doi.org/10.1039/B917103G

    Article  CAS  PubMed  Google Scholar 

  18. D. Chen, H. Feng, and J. Li, Chem. Rev. 112, 6027 (2012). https://doi.org/10.1021/cr300115g

    Article  CAS  PubMed  Google Scholar 

  19. K. Mkhoyan, A. Contryman, Silcox, et al., Microsc. Microanal. 16, 1704 (2010). https://doi.org/10.1017/s1431927610053961

    Article  CAS  Google Scholar 

  20. Y. Zhu, S. Murali, W. Cai, et al., Adv. Mater. 22, 3906 (2010). https://doi.org/10.1002/adma.201001068

    Article  CAS  PubMed  Google Scholar 

  21. H. A. Becerril, J. Mao, Z. Liu, et al., ACS Nano 2, 463 (2008). https://doi.org/10.1021/nn700375n

    Article  CAS  PubMed  Google Scholar 

  22. D. Li, M. B. Mueller, S. Gilje, et al., Nature Nanotechnol. 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  23. G. Srinivas, J. W. Burress, J. Ford, and T. Yildirim, J. Mater. Chem. 21, 11323 (2011). https://doi.org/10.1039/c1jm11699a

    Article  CAS  Google Scholar 

  24. Z. Pei, L. Li, L. Sun, et al., Carbon 51, 156 (2013). https://doi.org/10.1016/j.carbon.2012.08.024

    Article  CAS  Google Scholar 

  25. L. Wang, K. Lee, Y. -Y. Sun, et al., ACS Nano 3, 2995 (2009). https://doi.org/10.1021/nn900667s

    Article  CAS  PubMed  Google Scholar 

  26. E. C. Mattson, K. Pande, M. Unger, et al., J. Phys. Chem. C 117, 10698 (2013). https://doi.org/10.1021/jp3122853

    Article  CAS  Google Scholar 

  27. Y. Long, C. Zhang, X. Wang, et al., J. Mater. Chem. 21, 13934 (2011). https://doi.org/10.1039/c1jm12031j

    Article  CAS  Google Scholar 

  28. H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett. 287, 53 (1998). https://doi.org/10.1016/s0009-2614(98)00144-4

    Article  CAS  Google Scholar 

  29. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B 102, 4477 (1998). https://doi.org/10.1021/jp9731821

    Article  CAS  Google Scholar 

  30. M. D. Esrafili, F. Sharifi, and P. Nematollahi, J. Mol. Graphics Modell. 69, 8 (2016). https://doi.org/10.1016/j.jmgm.2016.08.005

    Article  CAS  Google Scholar 

  31. M. D. Esrafili, ChemistrySelect 3, 12072 (2018).

    Article  CAS  Google Scholar 

  32. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  33. B. Delley, J. Chem. Phys. 113, 7756 (2000). https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  35. S. Grimme, J. Comput. Chem. 27, 1787 (2006). https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  36. T. Szabo, O. Berkesi, P. Forgo, et al., Chem. Mater. 18, 2740 (2006). https://doi.org/10.1021/cm060258

    Article  CAS  Google Scholar 

  37. L. A. Chernozatonskii, P. B. Sorokin, A. A. Artyukh, Russ. Chem. Rev. 83, 251 (2014). https://doi.org/10.1070/RC2014v083n03ABEH00436-7?locatt=label:RUS

    Article  Google Scholar 

  38. K. A. Mkhoyan, A. W. Contryman, J. Silcox, et al., Nano Lett. 9, 1058 (2009). https://doi.org/10.1021/nl8034256

    Article  CAS  Google Scholar 

  39. D. W. Boukhvalov and M. I. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008). https://doi.org/10.1021/ja8021686

    Article  CAS  PubMed  Google Scholar 

  40. M. D. Esrafili, F. Sharifi, and P. Nematollahi, Appl. Surf. Sci. 387, 454 (2016). https://doi.org/10.1016/j.apsusc.2016.06.127

    Article  CAS  Google Scholar 

  41. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

  42. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  43. G. Kresse and D. Joubert, Phys. Rev. 59, 1758 (1999). https://doi.org/10.1103/physrevb.59.1758

    Article  CAS  Google Scholar 

  44. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision B.01 (Gaussian, Inc., Wallingford CT, 2010). https://doi.org/10.1063/1.464906

  45. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10 P, 6615 (2008). https://doi.org/10.1039/b810189b

  46. A. V. Korchun, E. Yu. Evshchik, S. A. Baskakov, et al., Chim. Techno Acta 7, 259 (2020). https://doi.org/10.15826/chimtech.2020.7.4.21

    Article  CAS  Google Scholar 

  47. D. Yu. Kornilova and S. P. Gubinb, Russ. J. Inorg. Chem. 65, 1965 (2020). https://doi.org/10.1134/S0036023620130021

    Article  Google Scholar 

  48. N. Vats, S. Rauschenbach, W. Sigle, et al., Nanoscale 10, 4952 (2018). https://doi.org/10.1039/c8nr00402a

    Article  CAS  PubMed  Google Scholar 

  49. C. Gomez-Navarro, J. C. Meyer, R. S. Sundaram, et al., Nano Lett. 10, 1144 (2010). https://doi.org/10.1021/nl9031617

    Article  CAS  PubMed  Google Scholar 

  50. D. Y. Kornilov and L. A. Kasharina, Inorg. Mater. Appl. Res. 10, 1072 (2019). https://doi.org/10.1134/s2075113319050125

    Article  Google Scholar 

  51. F. Perrozzi, S. Croce, E. Treossi, et al., Carbon 77, 473 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed at the Computing Center of the Institute of Problems of Chemical Physics, RAS, according to state assignment no. AAAA-A19-119061890019-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Zyubina.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyubina, T.S., Zyubin, A.S., Korchun, A.V. et al. Lithiation of a Silicon Oxide Cluster Adsorbed onto Graphene Oxide: Quantum-Chemical Simulation. Russ. J. Inorg. Chem. 67, 1785–1793 (2022). https://doi.org/10.1134/S0036023622600708

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622600708

Keywords:

Navigation