Skip to main content
Log in

Formation of the BiAl3(PO4)2(OH)6 Compound with a Waylandite Structure under Hydrothermal Conditions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The BiAl3(PO4)2(OH)6 compound with a waylandite structure has been synthesized for the first time under hydrothermal conditions at 200°С and a pressure of 7 MPa. It has been shown that the compound forms through the formation of an intermediate crystalline phase—trigonal BiPO4—and an amorphous phase of composition 0.5[3Al2O3 ⋅ 2P2O5 ⋅ 6H2O]. According to SEM data, particles resembling in morphology particles of the phase with a waylandite structure are detected after 6 h of synthesis. The formation of BiAl3(PO4)2(OH)6 in amounts distinguishable by X-ray diffraction is fixed after 12 h and almost completely ends after 48 h of hydrothermal treatment of the suspension of precursors. The formation of waylandite is confirmed by SEM and IR spectroscopy. The structure of BiAl3(PO4)2(OH)6 was refined by the Rietveld method from powder X-ray diffraction data (space group \(R\bar {3}m\) (166) in hexagonal axes, unit cell parameters: a = 6.99608(5) Å, c = 16.1495(4) Å). Refinement gives the filling factors of unity within the standard deviation for the positions of atoms heavier than oxygen. The measured pycnometric density of the sample (4.01(8) g/cm3) is slightly lower than the density calculated from the results of structure refinement (4.235(2) g/cm3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. O. Von Knorring and M. E. Mrose, Abstr. Am. Mineral. 48, 156 (1962). https://doi.org/10.1017/S0885715600012033

    Article  Google Scholar 

  2. A. M. Clark, A. G. Couper, P. G. Embrey, and E. E. Fejer, Mineral. Mag. 50, 731 (1986). https://doi.org/10.1180/minmag.1986.050.358.23

    Article  CAS  Google Scholar 

  3. P. Bayliss, Powder Diffr. 1, 331 (1986). https://doi.org/10.1017/S0885715600012033

    Article  CAS  Google Scholar 

  4. F. Novák, P. Pauliš, and C. Sűsser, Bull. Mineral. Petrol. 9, 230 (2001).

    Google Scholar 

  5. S. J. Mills, A. R. Kampf, M. Raudsepp, et al., Mineral. Petrol. 100, 249 (2010). https://doi.org/10.1007/s00710-010-0133-7

    Article  CAS  Google Scholar 

  6. L. Losertová, Z. Buřival, and Z. Losos, Bull. Mineral. Petrol. 22, 269 (2014).

    Google Scholar 

  7. S. V. Pribavkin, P. S. Kozlov, S. V. Mazur, et al., Mineralogy 3, 3 (2017).

    Google Scholar 

  8. Database “Mindat.org” (Hudson Institute of Mineralogy, USA). https://www.mindat.org/min-4252.html.

  9. Database “RRUFF Project” (University of Arizona, USA). https://rruff.info/waylandite/.

  10. U. Kolitsch and E. H. Nickel, et al., Mineral. Mag. 5, 919 (2010). https://doi.org/10.1180/minmag.2010.074.5.919

    Article  CAS  Google Scholar 

  11. R. G. Schwab, T. Pimpl, H. Schukow, et al., J. Miner. Geochem. 9, 385 (2004). https://doi.org/10.1127/0028-3649/2004/2004-0385

    Article  CAS  Google Scholar 

  12. U. Kolitsch and A. Pring, J. Mineral. Petrol. Sci. 96, 67 (2001). https://doi.org/10.2465/jmps.96.67

    Article  CAS  Google Scholar 

  13. Y. Hikichi, H. Ohsato, and M. Miyamoto, J. Mineralogy 19, 67 (1989). https://doi.org/10.2465/gkk1952.19.67

  14. O. V. Pozhidaeva, E. N. Korytkova, D. P. Romanov, et al., Russ. J. Gen. Chem. 72, 849 (2002). https://doi.org/10.1023/A:1020409702215

    Article  CAS  Google Scholar 

  15. M. O. Enikeeva and O. V. Proskurina, D. P. Danilovich, et al., Nanosyst.: Phys. Chem. Math. 11, 705 (2020). https://doi.org/10.17586/2220-8054-2020-11-6-705-715

    Article  CAS  Google Scholar 

  16. P. E. Meskin, A. I. Gavrilov, V. D. Maksimov, et al., Russ. J. Inorg. Chem. 52, 1648 (2007). https://doi.org/10.1134/S0036023607110022

    Article  Google Scholar 

  17. A. I. Nikolaev, L. G. Gerasimova, M. V. Maslova, et al., IOP Conf. Ser.: Mater. Sci. Eng. 704 (2019). https://doi.org/10.1088/1757-899X/704/1/012003

  18. M. O. Enikeeva, K. M. Kenges, O. V. Proskurina, et al., Russ. J. Appl. Chem. 93, 540 (2020). https://doi.org/10.1134/S1070427220040084

    Article  CAS  Google Scholar 

  19. V. G. Thomas, S. P. Demin, D. A. Foursenko, et al., J. Cryst. Growth 206, 203 (1999). https://doi.org/10.1016/S0022-0248(99)00312-7

    Article  CAS  Google Scholar 

  20. P. N. Gavryushkin, V. G. Thomas, N. B. Bolotina, et al., Cryst. Growth Des. 16, 1893 (2016). https://doi.org/10.1021/acs.cgd.5b01398

    Article  CAS  Google Scholar 

  21. E. N. Korytkova, L. N. Pivovarova, I. A. Drosdova, et al., Russ. J. Gen. Chem. 77, 1669 (2007). https://doi.org/10.1134/S1070363207100039

    Article  CAS  Google Scholar 

  22. E. N. Korytkova, L. N. Pivovarova, O. E. Semenova, et al., Russ. J. Inorg. Chem. 52, 338 (2007). https://doi.org/10.1134/S0036023607030084

    Article  Google Scholar 

  23. E. N. Korytkova, A. V. Maslov, L. N. Pivovarova, et al., Phys. Chem. Glass 30, 51 (2004).

    Article  CAS  Google Scholar 

  24. R. I. Mashkovtsev, E. S. Stoyanov, and V. G. Thomas, J. Struct. Chem. 45, 56 (2004). https://doi.org/10.1023/B:JORY.0000041501.77617.72

    Article  CAS  Google Scholar 

  25. D. Schwarz and H.-J. Bernhardt, et al., J. Gemm. 30, 59 (2006). https://doi.org/10.15506/JoG.2006.30.1.59

    Article  Google Scholar 

  26. E. N. Korytkova, A. V. Maslov, L. N. Pivovarova, et al., Inorg. Mater. 41, 743 (2005). https://doi.org/10.1007/s10789-005-0202-1

    Article  CAS  Google Scholar 

  27. L. P. Ogorodova, I. A. Kiselev, E. N. Korytkova, et al., Russ. J. Phys. Chem. 80, 1021 (2006). https://doi.org/10.1134/S003602440607003X

    Article  CAS  Google Scholar 

  28. Diffrac Suite Eva Version 5.1.0.5, Brucker AXS (Karlsruhe, Germany, 2019).

  29. T. G. Fawcett, S. N. Kabekkodu, J. R. Blanton, et al., Powder Diffr. 32, 63 (2017). https://doi.org/10.1017/S0885715617000288

    Article  CAS  Google Scholar 

  30. C. Maunders, J. Etheridge, N. Wright, et al., Acta Crystallogr. 61, 154 (2005). https://doi.org/10.1107/S0108768105001667

    Article  CAS  Google Scholar 

  31. A. Le Bail, H. Duroy, and J. L. Fourquet, Mater. Res. Bull. 23, 447 (1988). https://doi.org/10.1016/0025-5408(88)90019-0

    Article  CAS  Google Scholar 

  32. H. M. Rietveld, Acta. Crystallogr. 22, 151 (1967). https://doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  33. A. A. Coelho, J. Appl. Crystallogr. 51, 210 (2018). https://doi.org/10.1107/S1600576718000183

    Article  CAS  Google Scholar 

  34. H. Berger, X-ray Spectr. 15, 241 (1986). https://doi.org/10.1002/xrs.1300150405

    Article  CAS  Google Scholar 

  35. P. Thompson, D. E. Cox, and J. B. Hastings, J. Appl. Crystallogr. 20, 79 (1987). https://doi.org/10.1107/S0021889887087090

    Article  CAS  Google Scholar 

  36. R. L. Frost, Y. Xi, S. J. Palmer, et al., Mineral. Petrol. 82, 461 (2010). https://doi.org/10.1016/j.saa.2011.07.078

    Article  CAS  Google Scholar 

  37. A. Marimuthu and R. H. P. Devamani, Int. J. Appl. Sci. Eng. Res. 1, 769 (2012). https://doi.org/10.6088/ijaser.0020101078

    Article  CAS  Google Scholar 

  38. E. V. Rosseeva, J. Buder, P. Simon, et al., Chem. Mater. 20, 6003 (2008). https://doi.org/10.1021/cm8005748

    Article  CAS  Google Scholar 

  39. R. L. Frost, A. Lopez, Y. Xi, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 114, 309 (2013). https://doi.org/10.1016/j.saa.2013.05.033

    Article  CAS  Google Scholar 

  40. M. K. Trivedi, A. Branton, D. Trivedi, et al., J. Chromatogr. Sep. Tech. 6, 1 (2015). https://doi.org/10.4172/2157-7064.1000282

    Article  CAS  Google Scholar 

  41. M. Shao, A. Wang, H. Cui, et al., J. Mater. Sci., Mater. Electron. 30, 12056 (2020). https://doi.org/10.1007/s10854-020-03711-1

    Article  CAS  Google Scholar 

  42. M. Roming and C. Feldmann, J. Mater. Sci. 44, 1412 (2009). https://doi.org/10.1007/s10853-009-3258-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. A. Repina, V. I. Popova, E. I. Churin, et al., Geol. Ore Depos. 53, 564 (2011). https://doi.org/10.1134/S1075701511070191

    Article  Google Scholar 

  44. F. d’Yvoire and C. R. Seances. Acad. Sci. Paris 251, 2182 (1960).

    Google Scholar 

  45. J. Rankin, J. Sharpe, and P. Williams, Aust. J. Mineral. 14, 79 (2008). http://handle.uws.edu.au:8081/ 1959.7/538585.

  46. R. J. Hill and R. X. Fischer, J. Appl. Crystallogr. 23, 462 (1990). https://doi.org/10.1107/S0021889890006094

    Article  CAS  Google Scholar 

  47. W. A. Dollase, J. Appl. Crystallogr. 19, 267 (1986). https://doi.org/10.1107/S0021889886089458

    Article  CAS  Google Scholar 

  48. M. Järvinen, J. Appl. Crystallogr. 26, 525 (1994). https://doi.org/10.1107/S0021889893001219

    Article  Google Scholar 

  49. W. Kraus and G. Nolze, J. Appl. Crystallogr. 29, 301 (1996). https://doi.org/10.1107/S0021889895014920

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.V. Gusarov for attention to the work and valuable comments. The equipment of the Engineering Center of St. Petersburg State Technological Institute (TU) was used in the work. The X-ray diffraction experiment was processed using the software of the Federal Joint Research Center “Materials science and characterization in advanced technology” (Ioffe Institute, St.Petersburg.

Funding

The work of D.P.E. and O.V.P. was supported by the Russian Science Foundation (project no. 21-13-00260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Elovikov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elovikov, D.P., Tomkovich, M.V., Levin, A.A. et al. Formation of the BiAl3(PO4)2(OH)6 Compound with a Waylandite Structure under Hydrothermal Conditions. Russ. J. Inorg. Chem. 67, 850–860 (2022). https://doi.org/10.1134/S0036023622060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622060067

Keywords:

Navigation