Skip to main content
Log in

Specific Features of Synthesis and Luminescence for Lithium Aluminum Spinel LiAl5O8 Doped with Manganese Ions

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ceramic lithium aluminum spinels doped with manganese ions have been synthesized by a high-temperature solid-state reaction. Samples fabricated by annealing at 1000, 1100, 1200, or 1300°C in air for 4 h have been identified as LiAl5O8, which is cubic spinel belonging to the space group P4132. After annealing at 1000–1200°C, samples with the lattice parameter a = 7.923–7.925 Å show intense red luminescence of Mn4+ ions, which has a narrow luminescence band with a maximum at 662 nm. The excess charge of Mn4+ ions replacing Al3+ ions in the octahedral sites of the LiAl5O8 lattice is compensated for by an excess amount of lithium ions (compared to the stoichiometry) substituting for Al3+ ions adjacent to Mn4+. However, annealing at a higher temperature (1300°C) leads to the almost complete disappearance of the Mn4+ luminescence at 662 nm, although X-ray powder diffraction shows that the crystal structure of these ceramics remains the same one (space group P4132), but the lattice parameter a becomes 7.908 Å, which exactly corresponds to the lattice parameter of the LiAl5O8 single crystal. It is suggested that ceramics with a larger lattice parameter obtained at lower temperatures are solid solutions in which some of the Al3+ ions are replaced by larger Li+ ions. Such solid solutions are not stable and lose Li+ ions upon annealing at a high temperature to convert to the stoichiometric compound LiAl5O8. In stoichiometric LiAl5O8, Mn4+ ions cannot be stabilized in the octahedral sites due to the lack of a charge compensation mechanism, and there is no red luminescence of Mn4+ ions in such samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. G. B. Nair, H. C. Swart, and S. J. Dhoble, Prog. Mater. Sci 109, 100622 (2020). https://doi.org/10.1016/j.pmatsci.2019.100622

    Article  CAS  Google Scholar 

  2. Q. Zhou, L. Dolgov, A. M. Srivastava, et al., J. Mater. Chem. C 6, 2652 (2018). https://doi.org/10.1039/c8tc00251g

    Article  CAS  Google Scholar 

  3. S. Adachi, J. Lumin. 202, 263 (2018). https://doi.org/10.1016/j.jlumin.2018.05.05

    Article  CAS  Google Scholar 

  4. S. Adachi, ECS J. Solid State Sci. Technol. 9, 016001 (2020). https://doi.org/10.1149/2.0022001JSS

    Article  CAS  Google Scholar 

  5. Y. H. Kim, J. Ha, and W. B. Im, J. Mater. Res. Technol. 11, 181 (2021). https://doi.org/10.1016/j.jmrt.2021.01.011

    Article  CAS  Google Scholar 

  6. S. J. Dhoble, R. Priya, N. S. Dhoble, and O. P. Pandey, Luminescence 36, 560 (2021). https://doi.org/10.1002/bio.3991

    Article  CAS  PubMed  Google Scholar 

  7. L. Meng, L. Liang, and Y. Wen, Sci. Adv. Mater. 9, 456 (2017). https://doi.org/10.1166/sam.2017.2320

    Article  CAS  Google Scholar 

  8. T. Jansen, J. Gorobez, M. Kirm, et al., ECS J. Solid State Sci. Technol. 7, R3086 (2018). https://doi.org/10.1149/2.0121801jss

    Article  CAS  Google Scholar 

  9. A. J. S. Silva, S. M. Freitas, P. A. Nascimento, et al., Ceram. Int. 45, 18994 (2019). https://doi.org/10.1016/j.ceramint.2019.06.140

    Article  CAS  Google Scholar 

  10. V. C. Teixeira, A. J. S. Silva, I. F. Manali, et al., Opt. Mater. 94, 160 (2019). https://doi.org/10.1016/j.optmat.2019.05.029

    Article  CAS  Google Scholar 

  11. R. Famery, F. Queyroux, J.-C. Gilles, et al., J. Solid State Chem. 30, 257 (1979). https://doi.org/10.1016/0022-4596(79)90107-5

    Article  CAS  Google Scholar 

  12. M. Kriens, G. Adiwidjaja, W. Guse, et al., Neues Jahrb. Mineral. Monatsh. 8, 344 (1996).

    Google Scholar 

  13. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  14. A. Jain, S. P. Ong, G. Hautier, et al., APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  15. B. D. McNicol and G. T. Pott, J. Lumin. 6, 320 (1973). https://doi.org/10.1016/0022-2313(73)90027-6

    Article  CAS  Google Scholar 

  16. N. M. Khaidukov, M. N. Brekhovskikh, N. Yu. Kirikova, et al., Ceram. Int. 46, 21351 (2020). https://doi.org/10.1016/j.ceramint.2020.05.231

    Article  CAS  Google Scholar 

  17. N. M. Khaidukov, M. N. Brekhovskikh, N. Yu. Kirikova, et al., Russ. J. Inorg. Chem. 65, 1135 (2020). https://doi.org/10.1134/S0036023620080069

  18. S. Kh. Batygov, M. N. Brekhovskikh, L. V. Moiseeva, et al., Russ. J. Inorg. Chem. 66, 1491 (2021). https://doi.org/10.1134/S0036023621100028

    Article  Google Scholar 

  19. M. Aoyama, Y. Amano, K. Inoue, et al., J. Lumin. 136, 411 (2013). https://doi.org/10.1016/j.jlumin.2012.12.012

    Article  CAS  Google Scholar 

  20. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  21. Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 776 (1954). https://doi.org/10.1143/JPSJ.9.766

    Article  Google Scholar 

  22. H. Ji, X. Hou, M. Molokeev, et al., Dalton Trans. 49, 5711 (2020). https://doi.org/10.1039/D0DT00931H

    Article  CAS  PubMed  Google Scholar 

  23. S. P. Feofilov, A. B. Kulinkin, and N. M. Khaidukov, J. Lumin. 217, 116824 (2020). https://doi.org/10.1016/j.jlumin.2019.116824

    Article  CAS  Google Scholar 

  24. G. T. Pott and B. D. McNicol, J. Solid State Chem. 7, 132 (1973). https://doi.org/10.1016/0022-4596(73)90145-X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were performed by using equipment of the Joint Research Center at the Kurnakov Institute of General and Inorganic Chemistry, RAS, and the Lebedev Physical Institute, RAS.

Funding

The study was supported by the Russian Science Foundation (RSF) (grant no.18-13-00407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Brekhovskikh.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaidukov, N.M., Brekhovskikh, M.N., Kirikova, N.Y. et al. Specific Features of Synthesis and Luminescence for Lithium Aluminum Spinel LiAl5O8 Doped with Manganese Ions. Russ. J. Inorg. Chem. 67, 547–554 (2022). https://doi.org/10.1134/S003602362204009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362204009X

Keywords:

Navigation