Skip to main content
Log in

Copper(II) Complex of Bis(1',3'-Hydroxymethyl)-Spiro-(Fluorene-9,4'-Imidazolidine)-2',5'-Dione, Cytotoxicity and Antibacterial Activity of Its Derivative and Crystal Structure of Free Ligand

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The aims of the present study were to synthesize, elucidate the structure and investigate the biological properties of substituted fluorenylspirohydantoins: Cu(II)L1 complex of 1,3-dihydroxymethyl-(9'-fluorene)-spiro-5-hydantoin (bis(1',3'-hydroxymethyl)-spiro-(fluorene-9,4'-imidazolidine)-2',5'-dione) (L1) and 4'-bromo-(9'-fluorene)-spiro-5-hydantoin (4'-bromо-spiro-(fluorene-9,4'-imidazolidine)-2',5'-dione) (L2). Based on the experimental data, the most probable structure for the copper(II) complex was suggested with one deprotonated OH group in C-7 position of two ligand L1 molecules and O4-atom and formed six-membered chelate rings CuOCNCO–[CuL1-H)2]. We determined their cytotoxic effects on the tumor human cell line A2058 by WST-1 assay (Roche Applied Science). The antimicrobial activity against both Gram-positive, Gram-negative bacteria and the yeast Candida albicans was studied additionally. The structures of the new compounds were discussed based on the performed spectroscopic measurements (UV-Vis, IR, Raman, 1H- and 13C NMR spectroscopy) and the single-crystal X-ray diffraction method for 1,3-dihydroxymethyl-(9'-fluorene)-spiro-5-hydantoin. The compound was crystallized in monoclinic crystal system and P21/c space group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. E. Dolle, B. Le Bourdonnec, A. J. Goodman, G. A. Morales, J. M. Salvino, and W. J. Zhang, J. Comb. Chem. 9, 855 (2007). https://doi.org/10.1021/cc700111e

    Article  CAS  PubMed  Google Scholar 

  2. J. A. González-Vera, T. García-López, and R. Herranz, J. Org. Chem. 70, 3660 (2005). https://doi.org/10.1021/jo050146m

    Article  CAS  PubMed  Google Scholar 

  3. A. B. Khasanov, M. Ramirez-Weinhouse, T. R. Webb, and M. Thiruvazhi, J. Org. Chem. 69, 5766 (2004). https://doi.org/10.1021/jo049430o

    Article  CAS  PubMed  Google Scholar 

  4. N. E. Pitts, F. Vreeland, G. L. Shaw, et al., Metabolism 35, 96 (1986). https://doi.org/10.1016/0026-0495(86)90195-2

    Article  CAS  PubMed  Google Scholar 

  5. H. Byrtus, M. Pawlowski, B. Duszyńska, et al., Pol. J. Pharmacol. 53, 395 (2001). www.ncbi.nlm.nih.gov/ pubmed/11990087.

    CAS  PubMed  Google Scholar 

  6. I. Miwa, M. Hirano, M. Kanbara, and J. Okuda, Biochem. Pharmacol. 40, 303 (1990). https://doi.org/10.1016/0006-2952(90)90692-E

    Article  CAS  PubMed  Google Scholar 

  7. S. S. Hah, H. M. Kim, R. A. Sumbad, and P. T. Henderson, Biorg. Med. Chem. Lett. 15, 3627 (2005). https://doi.org/10.1016/j.bmcl.2005.05.113

    Article  CAS  Google Scholar 

  8. K. A. Watson, E. D. Chrysina, K. E. Tsitsanou, et al., Proteins 61, 966 (2005). https://doi.org/10.1002/prot.20653

    Article  CAS  PubMed  Google Scholar 

  9. V. L. Goodman, G. J. Brewer, and S. D. Merajver, Endocr. Relat. Cancer 11, 255 (2004). https://doi.org/10.1677/erc.0.0110255

    Article  CAS  PubMed  Google Scholar 

  10. T. D. Rae, P. J. Schmidt, R. A. Pufahl, et al., Science 284, 805 (1999). https://doi.org/10.1126/science.284.5415.805

    Article  CAS  PubMed  Google Scholar 

  11. F. Tisato, C. Marzano, M. Porchia, et al., Med. Res. Rev. 30, 708 (2010). https://doi.org/10.1002/med.20174

    Article  CAS  PubMed  Google Scholar 

  12. E. K. Beloglazkina, O. O. Krasnovskaya, D. A. Guk, et al., Polyhedron 148, 129 (2018). https://doi.org/10.1016/j.poly.2018.04.005

    Article  CAS  Google Scholar 

  13. P. Aslanidis, S. Kyritsis, M. Lalia-Kantouri, et al., Polyhedron 48, 140 (2012). https://doi.org/10.1016/j.poly.2012.08.065

    Article  CAS  Google Scholar 

  14. A. V. Mironov, E. V. Antipov, E. K. Beloglazkina, et al., Russ. Chem. Bull. 62, 672 (2013). https://doi.org/10.1007/s11172-013-0090-5

    Article  CAS  Google Scholar 

  15. B. Kumar and A. Suman, J. Drug Deliv. Ther. 10, 145 (2020). https://doi.org/10.22270/jddt.v10i6.4417

    Article  CAS  Google Scholar 

  16. J. Casas, A. Castineiras, D. Couce, et al., Acta Crystallogr., Sect. C 54, 427 (1998). https://doi.org/10.1107/S0108270197014960

    Article  Google Scholar 

  17. M. Arca, F. Demartin, F. Devillanova et al., Inorg. Chem. 37, 4164 (1998). https://doi.org/10.1021/ic980368l

    Article  CAS  PubMed  Google Scholar 

  18. J. S. Casas, A. Castineiras, N. Playa, A. Sanchez, et al., Polyhedron 18, 3653 (1999). https://doi.org/10.1016/S0277-5387(99)00298-3

    Article  CAS  Google Scholar 

  19. S. Wang, P. J. Zeng, Y. Q. Liu, et al., Synth. Metal. 150, 33 (2005). https://doi.org/10.1016/j.synthmet.2004.12.019

    Article  CAS  Google Scholar 

  20. K. R. J. Thomas, J. T. Lin, C.-M. Tsai, et al., Tetrahedron 62, 3517 (2006). https://doi.org/10.1016/j.tet.2006.02.001

    Article  CAS  Google Scholar 

  21. H. A. Bronstein, C. E. Finlayson, K. R. Kirov, et al., Organometallics 27, 2980 (2008). https://doi.org/10.1021/om800014e

    Article  CAS  Google Scholar 

  22. A. M. Assaka, B. Hu, J. Mays, et al., J. Lumin. 131, 710 (2011). https://doi.org/10.1016/j.jlumin.2010.11.024

    Article  CAS  Google Scholar 

  23. G.-J. Zhou, X.-Z. Wang, W.-Y. Wong, X.-M. Yu, H.‑S. Kwok, and Z. Lin, J. Organomet. Chem. 692, 3461 (2007). https://doi.org/10.1016/j.jorganchem.2007.04.013

    Article  CAS  Google Scholar 

  24. H. Zhen, J. Luo, W. Yang, et al., J. Mater. Chem. 17, 2824 (2007). https://doi.org/10.1039/B618990C

    Article  CAS  Google Scholar 

  25. L.-J. Jiang, Q.-H. Luo, Q.-X. Li, et al., Eur. J. Inorg. Chem. 2002, 664 (2002). https://doi.org/10.1002/1099-0682(200203)2002:3<664::AID-EJIC664>3.0.CO;2-N

    Article  Google Scholar 

  26. L.-J. Jiang, Q.-H. Luo, et al., Polyhedron 20, 2807 (2001). https://doi.org/10.1016/S0277-5387(01)00878-6

    Article  CAS  Google Scholar 

  27. M. Marinov, P. Marinova, and N. Stoyanov, Asian Chem. Lett. 15, 17 (2011).

    Google Scholar 

  28. A. Ahmedova, P. Marinova, K. Paradowska, et al., J. Mol. Struct. 892, 13 (2008). https://doi.org/10.1016/j.molstruc.2008.04.053

    Article  CAS  Google Scholar 

  29. A. Ahmedova, P. Marinova, K. Paradowska, et al., Polyhedron 29, 1639 (2010). https://doi.org/10.1016/j.poly.2010.02.008

    Article  CAS  Google Scholar 

  30. A. Ahmedova, P. Marinova, K. Paradowska, et al., Inorg. Chim. Acta 363, 3919 (2010). https://doi.org/10.1016/j.ica.2010.07.050

    Article  CAS  Google Scholar 

  31. P. T. Todorov, R. P. Nikolova, E. D. Naydenova, et al., J. Chem. Crystallogr. 42, 566 (2012). https://doi.org/10.1007/s10870-012-0280-2

    Article  CAS  Google Scholar 

  32. H. T. Nagasawa, J.A. Elberling, F.N. Shirota, J. Med. Chem. 16, 823 (1973). https://doi.org/10.1021/jm00265a016

    Article  CAS  Google Scholar 

  33. H.-L. Pan, T. L. Fletcher, J. Med. Chem. 10, 957 (1967). https://doi.org/10.1021/jm00317a050

    Article  CAS  PubMed  Google Scholar 

  34. L. Jirovetz, G. Buchbauer, T. Schweiger, et al., M. Geissler, Nat. Prod. Commun. 2, 407 (2007). https://doi.org/10.1177/1934578X0700200411

    Article  CAS  Google Scholar 

  35. R. Denkova, Z. Denkova, V. Yanakieva, and D. Blazheva, in Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, Ed. by A. Méndez-Vilas (Formatex Research Center, Badajoz, Spain, 2013), p. 857.

    Google Scholar 

  36. Rigaku Oxford Diffraction. CrysAlis Pro (Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, 2015).

    Google Scholar 

  37. G. M. Sheldrick, Acta Cryst. C. 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  38. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Cryst. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  39. L. J. Farrugia, J. Appl. Cryst. 45, 849 (2012). https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  40. C. F. Macrae, I. Sovago, S. J. Cottrell, et al., J. Appl. Cryst. 53, 226 (2020). https://doi.org/10.1107/S1600576719014092

    Article  CAS  Google Scholar 

  41. K. Tishchenko, E. Beloglazkina, M. Proskurnina, et al., J. Inorg. Biochem. 175, 190 (2017). https://doi.org/10.1016/j.jinorgbio.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  42. E. K. Beloglazkina, A. G. Majouga, I. V. Yudin, et al., Russ. Chem. Bull. 55, 1015 (2006). https://doi.org/10.1007/s11172-006-0371-3

    Article  CAS  Google Scholar 

  43. P. Marinova, M. Marinov, V. Delchev, et al., Acta Chim. Slov. 62, 225 (2015). https://doi.org/10.17344/acsi.2014.1206

    Article  CAS  PubMed  Google Scholar 

  44. V. S. Sergienko, Russ. J. Inorg. Chem. 64, 583 (2019). https://doi.org/10.1134/S0036023619050164

    Article  CAS  Google Scholar 

  45. T. V. Lifintseva, A. S. Burlov, V. G. Vlasenko, et al., Russ. J. Coord. Chem. 45, 867 (2019). https://doi.org/10.1134/S1070328419120054

    Article  CAS  Google Scholar 

  46. A. A. Vitiu, Ed. B. Coropceanu, and P. N. Bourosh, Russ. J. Coord. Chem. 45, 804 (2019). https://doi.org/10.1134/S1070328419110101

    Article  CAS  Google Scholar 

  47. P. Larkin, Infrared and Raman Spectroscopy. Principles and Spectral Interpretation (Elsevier, 2011).

    Google Scholar 

  48. B. Shivachev, R. Petrova, E. Naydenova, Acta Cryst. E 62, o3887 (2006). https://doi.org/10.1107/S1600536806031539

    Article  CAS  Google Scholar 

  49. P. T. Todorov, R. N. Petrova, E. D. Naydenova, and B. L. Shivachev, Central Eur. J. Chem. 7, 14 (2009). https://doi.org/10.2478/s11532-008-0087-3

    Article  CAS  Google Scholar 

  50. P. T. Todorov, P. N. Peneva, S. I. Georgieva, et al., New J. Chem. 43, 2740 (2019). https://doi.org/10.1039/C8NJ05748F

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful also to prof. Plamen Penchev from University of Plovdiv for spectra measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marinova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinova, P., Marinov, M., Kazakova, M. et al. Copper(II) Complex of Bis(1',3'-Hydroxymethyl)-Spiro-(Fluorene-9,4'-Imidazolidine)-2',5'-Dione, Cytotoxicity and Antibacterial Activity of Its Derivative and Crystal Structure of Free Ligand. Russ. J. Inorg. Chem. 66, 1925–1935 (2021). https://doi.org/10.1134/S0036023621130052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621130052

Keywords:

Navigation