Skip to main content
Log in

Crystal Chemistry and Magnetic Properties of Polycrystalline Spinel Ferrites Li0.33Fe2.29Zn0.21Mn0.17O4

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Polycrystalline spinel ferrites of composition Li0.33Fe2.29Zn0.21Mn0.17O4 have been synthesized by the ceramic method at sintering temperatures of 950, 1000, 1050, and 1100°С. The crystal structure of the resulting samples has been studied by X-ray powder diffraction, and the chemical composition of the ferrites has been refined by the secondary ion mass spectrometry. Magnetic characteristics of the samples have been measured on an MK-3E magnetic measuring device. Room-temperature Mössbauer spectra have been recorded on an Ms-1104 Em spectrometer. The cation distribution in the crystal lattice of the resulting ferrites has been established; crystal chemical formulas have been calculated for each sintering temperature. The Mössbauer spectra of all the obtained samples are modeled by five sextets, which is explained by the appearance of nonequivalent Fe3+ ions in octahedral and tetrahedral positions, differing in the composition of the second coordination sphere. Combinations of lithium, manganese, and zinc ions in the nearest cationic environment of octahedral iron ions have been determined on the basis of a model that takes into account the peculiarities of changes in the Mössbauer parameters with an increase in the sintering temperature of ferrites. It has been shown that Mössbauer spectroscopy in combination with X-ray powder diffraction and magnetometry provides efficient control of the phase composition, cation distribution, and magnetic properties in substituted ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. I. Rabkin, S. A. Soskin, and B. Sh. Epshtein, Ferrites. Structure, Properties, Production Technology (Energiya, Leningrad,1968) [in Russian].

    Google Scholar 

  2. L. M. Letyuk, V. G. Kostishin, and A. V. Gonchar, Ferrite Materials Technology of Magnetoelectronics (MISiS, Moscow, 2005) [in Russian].

  3. F. Xie, Y. Chen, M. Bai, and P. Wang, Ceram. Int. 45, 17915 (2019). https://doi.org/10.1016/j.ceramint.2019.06.008

    Article  CAS  Google Scholar 

  4. F. Xu, X. Shi, Y. Yang, et al., J. Alloys Compd. 827, 154338 (2020). https://doi.org/10.1016/j.jallcom.2020.154338

    Article  CAS  Google Scholar 

  5. F. Xie, H. Liu, M. Bai, et al., Ceram. Int. 47, 1121 (2021). https://doi.org/10.1016/j.ceramint.2020.08.228

    Article  CAS  Google Scholar 

  6. X. Wang, Y. Li, Z. Chen, et al., J. Alloys Compd. 797, 566 (2019). https://doi.org/10.1016/j.jallcom.2019.05.102

    Article  CAS  Google Scholar 

  7. Y. Liao, Y. Wang, Z. Chen, et al., Ceram. Int. 46, 487 (2020). https://doi.org/10.1016/j.ceramint.2019.08.286

    Article  CAS  Google Scholar 

  8. F. Xie, H. Liu, J. Zhao, et al., J. Alloys Compd. 851, 156806 (2021). https://doi.org/10.1016/j.jallcom.2020.156806

    Article  CAS  Google Scholar 

  9. F. Xie, H. Liu, S. Zhou, et al., J. Alloys Compd. 862, 158650 (2021). https://doi.org/10.1016/j.jallcom.2021.158650

    Article  CAS  Google Scholar 

  10. S. A. Mazen, H. M. Elsayed, and N. I. Abu-Elsaad, Mater. Chem. Phys. 256, 123676 (2020). https://doi.org/10.1016/j.matchemphys.2020.123676

    Article  CAS  Google Scholar 

  11. V. S. Sawant, A. A. Bagade, and K. Y. Rajpure, Phys. B: Condens. Matter. 474, 47 (2015). https://doi.org/10.1016/j.physb.2015.06.005

    Article  CAS  Google Scholar 

  12. N. Qing, S. Li, C. Ensi, et al., Curr. Appl. Phys. 20, 1019 (2020). https://doi.org/10.1016/j.cap.2020.06.012

    Article  Google Scholar 

  13. Qing Nia, Li Suna, Ensi Cao, et al., Ceram. Int. 46, 9722 (2020). https://doi.org/10.1016/j.ceramint.2019.12.240

    Article  CAS  Google Scholar 

  14. A. P. Surzhikov, E. V. Nikolaev, E. N. Lysenko, et al., Izv. VUZov, Fiz. 63, 164 (2020). https://doi.org/10.17223/00213411/63/5/164

    Article  Google Scholar 

  15. Q. Zhao, H. Zhang, F. Xu, et al., J. Alloys Compd. 764, 834 (2018). https://doi.org/10.1016/j.jallcom.2018.06.080

    Article  CAS  Google Scholar 

  16. T. Collins and A. E. Brown, J. Appl. Phys. 42, 3451 (1971). https://doi.org/10.1063/1.1660752

    Article  CAS  Google Scholar 

  17. P. Baba, G. Argentina, and W. Courtney, IEEE Trans. Magn. 8, 83 (1972). https://doi.org/10.1109/TMAG.1972.1067269

    Article  CAS  Google Scholar 

  18. A. N. Yusoff and M. H. Abdullah, J. Magn. Magn. Mater. 269, 271 (2004). https://doi.org/10.1016/S0304-8853(03)00617-6

    Article  CAS  Google Scholar 

  19. T. Nakamura, T. Miyamoto, and Y. Yamada, J. Magn. Magn. Mater. 256, 340 (2003). https://doi.org/10.1016/S0304-8853(02)00698-4

    Article  CAS  Google Scholar 

  20. D. Kim, Y. Yoon, K. Jo, et al., J. Electromagn. Eng. Sci. 16, 150 (2016). https://doi.org/10.5515/JKIEES.2016.16.3.150

    Article  Google Scholar 

  21. V. V. Korovushkin, A. V. Trukhanov, V. G. Kostishin, et al., Russ. J. Inorg. Chem. 64, 574 (2019). https://doi.org/10.1134/S0036023619050115

    Article  CAS  Google Scholar 

  22. V. Verma, V. Pandeya, V. N. Shukla, et al., Solid State Commun. 149, 1726 (2009). https://doi.org/10.1016/j.ssc.2009.06.010

    Article  CAS  Google Scholar 

  23. E. N. Lysenko, A. L. Astafyev, and V. A. Vlasov, J. Magn. Magn. Mater. 465, 457 (2018). https://doi.org/10.1016/j.jmmm.2018.06.010

    Article  CAS  Google Scholar 

  24. S. F. Marenkin, I. V. Fedorchenko, V. M. Trukhan, et al., Russ. J. Inorg. Chem. 59, 355 (2014). https://doi.org/10.1134/S0036023614040111

    Article  CAS  Google Scholar 

  25. D. G. Muratov, L. V. Kozhitov, and A. V. Popkova, Russ. J. Inorg. Chem. 61, 1312 (2016). https://doi.org/10.1134/S0036023616100168

    Article  CAS  Google Scholar 

  26. I. A. Tkachenko, A. E. Panasenko, M. M. Odinokov, et al., Russ. J. Inorg. Chem. 65, 1142. https://doi.org/10.1134/S0036023620080173

  27. M. M. Abdullaev, S. Y. Istomin, A. V. Sobolev, et al., Russ. J. Inorg. Chem. 64, 696 (2019). https://doi.org/10.1134/S0036023619060032

    Article  CAS  Google Scholar 

  28. A. S. Kamzin, P. Lampen-Kelley, and M. H. Phan, Phys. Solid State 58, 792 (2016). https://doi.org/10.1134/S1063783416040089

    Article  CAS  Google Scholar 

  29. V. G. Kostishin, R. M. Vergazov, V. G. Andreev, et al., Izv. VUZov. Mater. Elektron. Tekh. 18 (2010).

  30. V. G. Kostishin, R. M. Vergazov, V. G. Andreev, et al., Izv. VUZov. Mater. Elektron. Tekh. 33 (2011).

  31. V. G. Kostishin, R. M. Vergazov, S. B. Men’shova, and I. M. Isaev, Ros. Tekhnol. J. 8, 878 (2020). https://doi.org/10.32362/2500-316X-2020-8-6-87-108

    Article  Google Scholar 

  32. V. G. Kostishin, R. M. Vergazov, S. B. Men’shova, et al., Zavod. Lab. 87, 30 (2021). https://doi.org/10.26896/1028-6861-2021-87-1-30-34

    Article  CAS  Google Scholar 

  33. F. Menil, J. Phys. Chem. Solids 46, 763 (1985). https://doi.org/10.1016/0022-3697(85)90001-0

    Article  CAS  Google Scholar 

  34. V. V. Korovushkin, A. V. Trukhanov, V. G. Kostishin, et al., Inorg. Mater. 56, 707 (2020). https://doi.org/10.1134/S0020168520070080

    Article  CAS  Google Scholar 

  35. WWW-MINCRIST. Crystallographic and Crystal-Chemical Database for Minerals and Their Analogues (Institute of Experimental Mineralogy, Russian Academy of Sciences, 2021). http: //database.iem.ac.ru/mincryst/rus/index.php (Application Date April 28, 2021).

  36. B. P. Nikol’skii and O. N. Grigorov, Chemist’s Handbook, vol. 1 (Khimiya, Leningrad, 1966) [in Russian].

    Google Scholar 

  37. A. V. Knyazev, N. N. Smirnova, M. Maczka, et al., Thermochim. Acta 559, 40 (2013). https://doi.org/10.1016/j.tca.2013.02.01

    Article  CAS  Google Scholar 

  38. A. V. Knyazev, N. G. Chernorukov, S. S. Knyazeva, et al., Vest. Nizh. Gos. Univ. Ser. Khim. 4, 58 (2014).

    Google Scholar 

  39. E. W. Gorter, Phillips Res. Rep. 9, 295 (1954).

    CAS  Google Scholar 

  40. K. Haneda and A. H. Morrish, Phys. Lett. A 64, 259 (1977). https://doi.org/10.1016/0375-9601(77)90736-8

    Article  Google Scholar 

  41. Sh. Sh. Bashkirov, A. B. Liberman, and V. I. Sinyavskii, Ferrite Magnetic Microstructure (Izd-vo Kazanskogo Universiteta, Kazan, 1978) [in Russian].

    Google Scholar 

  42. I. N. Zakharova, M. A. Shipilin, V. P. Alekseev, et al., Tech. Phys. Lett. 38, 55 (2012). https://doi.org/10.1134/S1063785012010294

    Article  CAS  Google Scholar 

  43. K. Volenic, M. Seberini, and J. Neid, Chech. J. Phys. 25, 1063 (1975). https://doi.org/10.1007/BF01597585

    Article  Google Scholar 

  44. J. B. Goodenough, Magnetism and the Chemical Bond (Interscience Publishers, New York, 1963).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (agreement no. 19-19-00694, May 6, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kostishin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, I.M., Kostishin, V.G., Korovushkin, V.V. et al. Crystal Chemistry and Magnetic Properties of Polycrystalline Spinel Ferrites Li0.33Fe2.29Zn0.21Mn0.17O4. Russ. J. Inorg. Chem. 66, 1917–1924 (2021). https://doi.org/10.1134/S0036023621120056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621120056

Keywords:

Navigation