Skip to main content
Log in

Transformations of Polymers of 4,4'-Dipyridyl and Cobalt(II) and Manganese(II) Cymantrenates in the Presence of N-Donors of Different Denticity

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

It has been found that the reactions of a suspension of 1D-coordination polymers (CPs) {(µ-dipy)2Mn2[µ-(OOCC5H4)Mn(CO)3]22-(OOCC5H4)Mn(CO)3]2·2MeOH}n and {[µ-dipy)Co[(OOCC5H4)Mn(CO)3]2[O(H)Me]2}n (where dipy is 4,4'-dipy) with monodentate pyrazole (Hpz) and 3,5-dimethylpyrazole (Hdmpz) upon boiling in CH2Cl2 lead to the formation of 1D-CPs {µ-dipy)Mn[(OOCC5H4)Mn(CO)3]2(Hpz)2}n (1) and {(µ-dipy)Co[η2-(OOCC5H4)Mn(CO)3][(OOCC5H4)Mn(CO)3](Hdmpz)· Hdmpz}n (2), respectively. In the initial manganese(II) polymer, a binuclear fragment with coordination of two Hpz molecules by a metal atom in 1 is destroyed, and in the case of cobalt(II), two alcohol molecules are replaced by an Hdmpz molecule, and one of the anions becomes η2-coordinated. As a result of the reaction of the initial cobalt(II) CP with 1,10-phenanthroline (Phen) containing a water molecule, binuclear complex Co2[(OOCC5H4)Mn(CO)3]4(Phen)2(µ-dipy)(OH2)2 (3) is formed. The synthesized compounds 13 were studied by chemical analysis, IR spectroscopy, and X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. R. Cook, Y.-R. Zheng, and P. J. Stang, Chem. Rev. 113, 734 (2013). https://doi.org/10.1021/cr3002824

    Article  CAS  PubMed  Google Scholar 

  2. S. Leininger, B. Olenyuk, and P. J. Stang, Chem. Rev. 100, 53 (2000). https://doi.org/10.1021/cr9601324

    Article  CAS  Google Scholar 

  3. M. Eddaoudi, D. B. Moler, H.-L. Li, et al., Acc. Chem. Res. 34, 319 (2001). https://doi.org/10.1021/ar000034b

    Article  CAS  PubMed  Google Scholar 

  4. J.-R. Li, Y. Ma, M. C. McCarthy, et al., Coord. Chem. Rev. 55, 1791 (2011).https://doi.org/10.1016/j.ccr.2011.02.012

  5. R. J. Kuppler, D. J. Timmons, Q.-R. Fang, et al., Coord. Chem. Rev. 253, 3042 (2009). https://doi.org/10.1016/j.ccr.2009.05.019

    Article  CAS  Google Scholar 

  6. M. A. Uvarova, A. A. Grineva, R. R. Datchuk, and S. E. Nefedov, Russ. J. Inorg. Chem. 63, 618 (2018). https://doi.org/10.1134/S0036023618050108

    Article  CAS  Google Scholar 

  7. M. A. Uvarova, A. A. Grineva, R. R. Datchuk, and S. E. Nefedov, Russ. J. Inorg. Chem. 65, 36 (2020). https://doi.org/10.1134/S0036023620010192

    Article  CAS  Google Scholar 

  8. Q. Wang and D. Astruc, Chem. Reviews 2, 1438 (2020). https://doi.org/10.1021/acs.chemrev.9b00223

    Article  CAS  Google Scholar 

  9. M. Y. Cong, X. Y. Chen, K. Xia, et al., J. Mat. Chem. A 9, 4673 (2020). https://doi.org/10.1039/d0ta08741f

    Article  CAS  Google Scholar 

  10. SanjayK. Mandal, Acs Appl. Mater. Interfaces 12, 37137 (2020). https://doi.org/10.1021/acsami.0c09024

    Article  CAS  PubMed  Google Scholar 

  11. L. Zhang, PF. An, YN. Shi, et al., Sci. Adv. 6, 4824 (2020). https://doi.org/10.1126/sciadv.aaz4824

    Article  CAS  Google Scholar 

  12. N. Lehnert and F. Tuczek, Inorg. Chem. 38, 1671 (1999). https://doi.org/10.1021/ic9809409

    Article  CAS  PubMed  Google Scholar 

  13. H. He, Q. Sun, W. Gao, et al., Angew. Chem. 57, 4657 (2018).

    Article  CAS  Google Scholar 

  14. SMART (control) and SAINT (integration) Software, Version 5.0, Madison (WI, USA), Bruker AXS Inc., 1997.

    Google Scholar 

  15. SAINT. Area-Detector Integration Sofware, Madison (WI, USA), Bruker AXS Inc., 2012.

    Google Scholar 

  16. G. M. Sheldrick, SADABS. Program for Scaling and Correction of Area Detector Data (Univ. of Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  17. G. M. Sheldrick, Acta Crystallogr. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  18. T. Hu, X. Zhao, X. Hu, et al., RSC Adv. 1, 1682 (2011). https://doi.org/10.1039/c1ra00695a

    Article  CAS  Google Scholar 

  19. R. Pothiraja, M. Sathiyendiran, R. J. Butcher, and R. Murugavel, Inorg. Chem. 43, 7585 (2004). https://doi.org/10.1021/ic048781i

    Article  CAS  PubMed  Google Scholar 

  20. R. Pothiraja, M. Sathiyendiran, R. J. Butcher, and R. Murugavel, Inorg. Chem. 44, 6314 (2005). https://doi.org/10.1021/ic050742z

    Article  CAS  PubMed  Google Scholar 

  21. S.-Y. Zhang, L. Wojtas, and M. J. Zaworotko, J. Am. Chem. Soc. 137, 12045 (2015). https://doi.org/10.1021/jacs.5b06760

    Article  CAS  PubMed  Google Scholar 

  22. J. Yoshida, S. Nishikiori, and R. Kuroda, Chem. Lett. 36, 678 (2007). https://doi.org/10.1246/cl.2007.678

    Article  CAS  Google Scholar 

  23. J. D. Woodward, R. Backov, K. A. Abboud, et al., Polyhedron 22, 2821 (2003). https://doi.org/10.1016/S0277-5387(03)00409-1

    Article  CAS  Google Scholar 

  24. X. Li, X.-L. Chi, Y.-C. Xu, et al., Inorg. Chim. Acta 445, 160 (2016). https://doi.org/10.1016/j.ica.2016.02.042

    Article  CAS  Google Scholar 

  25. Sh.-Q. Wang, Q.-Y. Yang, S. Mukherjee, et al., Chem. Commun. 54, 7042 (2018). https://doi.org/10.1039/C8CC03838D

    Article  CAS  Google Scholar 

  26. CSD. Version 5.42 (November 2020).

  27. J. Zhang and L.-G. Zhu, J. Mol. Struct. 931, 87 (2009). https://doi.org/10.1016/j.molstruc.2009.05.032

    Article  CAS  Google Scholar 

  28. Sh. Xu, Y.-Ch. Dai, Q.-M. Qiu, et al., Acta Crystallogr., Sect. E 68, m1222 (2012). https://doi.org/10.1107/S1600536812036318

    Article  CAS  Google Scholar 

  29. S. K. Chawla, M. S. Hundal, J. Kaur, and S. Obrai, Polyhedron 20, 2105 (2001). https://doi.org/10.1016/S0277-5387(01)00703-3

    Article  CAS  Google Scholar 

  30. R. W. Seidel, R. Goddard, C. Hoch, and I. M. Oppel, Z. Anorg. Allg. Chem. 637, 1545 (2011). https://doi.org/10.1002/zaac.201100181

    Article  CAS  Google Scholar 

  31. H. W. Park, S. M. Sung, K. S. Min, et al., Eur. J. Inorg. Chem 11, 2857 (2001).

    Article  Google Scholar 

  32. M. Wang, Ch.-B. Ma, Ch.-N. Chen, and Q.-T. Liu, J. Mol. Struct. 891, 292 (2008).

    Article  CAS  Google Scholar 

  33. E. Melnic, E. B. Coropceanu, A. Forni, et al., Cryst. Growth Des. 16, 6275 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction studies of complexes and IR spectral studies were carried out using the equipment of the Center for Collective Use of the Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, which functions with the support of the State Assignment of the Kurnakov Institute RAS in the field of fundamental scientific research.

Funding

This work was carried out within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences in the field of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Nefedov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarova, M.A., Nefedov, S.E. Transformations of Polymers of 4,4'-Dipyridyl and Cobalt(II) and Manganese(II) Cymantrenates in the Presence of N-Donors of Different Denticity. Russ. J. Inorg. Chem. 66, 1660–1668 (2021). https://doi.org/10.1134/S0036023621110218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621110218

Keywords:

Navigation