Skip to main content
Log in

The Mechanism of Halogenation of Decahydro-closo-Decaborate Dianion by Hydrogen Chloride

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of the halogenation of decahydro-closo-decaborate dianion [B10H10]2− by HCl via the electrophile-induced nucleophilic substitution (EINS) was explored at M06/6-311++G(d,p) level of DFT theory in acetonitrile (MeCN) taking into account non-specific solvent effect (SMD model). The dihydrogen-bonded (DHB) complexes are the first and important reaction intermediates of the EINS process since they determine the principal direction of HCl attack and lead to the proton transfer to the most reactive and elongated B–H bond. Upon the successive replacement of H with Cl in the closo-borane structure, a gradual increase in the electron deficiency of closo-borane and the electrophilicity of boron atoms are observed. The lack of stabilization of the η2-H2 complexes for the subsequent stages of the reaction is associated with an increased electrophilicity of boron atoms in substituted closo-boranes. An increased electrophilicity of boron atoms in substituted closo-boranes and higher activation energy of each subsequent stage during the EINS process hamper the reaction and completely stop the chlorination on 3rd or 4th reactions steps. Thus, the data obtained indicate that for the selective synthesis of halogenated products [B10H(10 – x)Clx]2− (x = 5–7) it is necessary to use an approach alternative to the simple acid-initiated nucleophilic substitution. This could be the activation of the bond by Lewis superacids or transition metal catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov, Russ. Chem. Bull. 51, 1362 (2002). https://doi.org/10.1023/A:1020942418765

    Article  CAS  Google Scholar 

  2. Y. Z. Voloshin, O. A. Varzatskii, and Y. N. Bubnov, Russ. Chem. Bull. 56, 577 (2007). https://doi.org/10.1007/s11172-007-0100-6

    Article  CAS  Google Scholar 

  3. I. B. Sivaev and V. V. Bregadze, Eur. J. Inorg. Chem. 2009, 1433 (2009). https://doi.org/10.1002/ejic.200900003

    Article  CAS  Google Scholar 

  4. R. F. Barth, P. Mi, and W. Yang, Cancer Commun. 38, 35 (2018). https://doi.org/10.1186/s40880-018-0299-7

    Article  Google Scholar 

  5. K. Hu, Z. Yang, L. Zhang, et al., Coord. Chem. Rev. 405, 213139 (2020). https://doi.org/10.1016/j.ccr.2019.213139

    Article  CAS  Google Scholar 

  6. F. Ali, N. S Hosmane, and Y. Zhu, Molecules 25, 828 (2020). https://doi.org/10.3390/molecules25040828

    Article  CAS  PubMed Central  Google Scholar 

  7. M. A. Dymova, S. Y. Taskaev, V. A. Richter, et al., Cancer Commun. 40, 406 (2020). https://doi.org/10.1002/cac2.12089

    Article  Google Scholar 

  8. B. R. S. Hansen, M. Paskevicius, M. Jørgensen, et al., Chem. Mater. 29, 3423 (2017). https://doi.org/10.1021/acs.chemmater.6b04797

    Article  CAS  Google Scholar 

  9. K. E. Kweon, J. B. Varley, P. Shea, N. Adelstein, et al., Chem. Mater. 29, 9142 (2017). https://doi.org/10.1021/acs.chemmater.7b02902

    Article  CAS  Google Scholar 

  10. Z. Lu and F. Ciucci, Chem. Mater. 29, 9308 (2017). https://doi.org/10.1021/acs.chemmater.7b03284

    Article  CAS  Google Scholar 

  11. M. N. Guzik, R. Mohtadi, S. Sartori, J. Mater. Res. 34, 877 (2019). https://www.cambridge.org/core/article/lightweight-complex-metal-hydrides-for-li-na-and-mgbased-batteries/4A39B795ABAAB2D40792E2375-C08402A.

    Article  CAS  Google Scholar 

  12. S. Li, P. Qiu, J. Kang, et al., ACS Appl. Mater. Interfaces 13, 17554 (2021). https://doi.org/10.1021/acsami.1c01659

    Article  CAS  PubMed  Google Scholar 

  13. B. Ringstrand, Liq. Cryst. Today 22, 22 (2013). https://doi.org/10.1080/1358314X.2013.829932

    Article  CAS  Google Scholar 

  14. A. Jankowiak, A. Baliński, J. E. Harvey, et al., J. Mater. Chem. C 1, 1144 (2013). https://doi.org/10.1039/C2TC00547F

    Article  CAS  Google Scholar 

  15. M. O. Ali, D. Pociecha, J. Wojciechowski, et al., J. Organomet. Chem. 865, 226 (2018). https://doi.org/10.1016/j.jorganchem.2018.04.003

    Article  CAS  Google Scholar 

  16. M. O. Ali, J. C. Lasseter, R. Żurawiński, et al., Chem. Eur. J. 25, 2616 (2019). https://doi.org/10.1002/chem.201805392

    Article  CAS  PubMed  Google Scholar 

  17. V. Geis, K. Guttsche, C. Knapp, et al., Dalton Trans., 2687 (2009). https://doi.org/10.1039/B821030F

  18. J. C. Axtell, L. M. A. Saleh, E. A. Qian, et al., Inorg. Chem. 57, 2333 (2018). https://doi.org/10.1021/acs.inorgchem.7b02912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Justus, K. Rischka, J. F. Wishart, et al., Chem. Eur. J. 14, 1918 (2008). https://doi.org/10.1002/chem.200701427

    Article  CAS  PubMed  Google Scholar 

  20. M. Nieuwenhuyzen, K. R. Seddon, F. Teixidor, et al., Inorg. Chem. 48, 889 (2009). https://doi.org/10.1021/ic801448w

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhu and N. S. Hosmane, Eur. J. Inorg. Chem. 2017, 4369 (2017). https://doi.org/10.1002/ejic.201700553

    Article  CAS  Google Scholar 

  22. I. B. Sivaev, A. V. Prikaznov, D. Naoufal, Collect. Czech. Chem. Commun. 75, 1149 (2010). https://doi.org/10.1135/cccc2010054

    Article  CAS  Google Scholar 

  23. K. Y. Zhizhin, A. P. Zhdanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 55, 2089 (2010). https://doi.org/10.1134/S0036023610140019

    Article  CAS  Google Scholar 

  24. K. Y. Zhizhin, V. N. Mustyatsa, E. A. Malinina, et al., Russ. J. Coord. Chem. 27, 619 (2001). https://doi.org/10.1023/A:1017989219486

    Article  CAS  Google Scholar 

  25. K. Y. Zhizhin, V. Mustyatsa, E. Y. Matveev, et al., Russ. J. Inorg. Chem. 48, 760 (2003).

    CAS  Google Scholar 

  26. V. V. Drozdova, K. Y. Zhizhin, E. A. Malinina, et al., Russ. J. Inorg. Chem. 52, 996 (2007). https://doi.org/10.1134/S0036023607070042

    Article  Google Scholar 

  27. D. L. DuBois, D. E. Berning, Appl. Organomet. Chem. 14, 860 (2000). https://doi.org/10.1002/1099-0739(200012)14:12<860::AID-AOC87>3.0.CO;2-A

    Article  CAS  Google Scholar 

  28. G. Kovács, I. Pápai, Organometallics 25, 820 (2006). https://doi.org/10.1021/om050726+

    Article  CAS  Google Scholar 

  29. E. S. Wiedner, M. B. Chambers, C. L. Pitman, et al., Chem. Rev. (Washington, DC) 116, 8655 (2016). https://doi.org/10.1021/acs.chemrev.6b00168

    Article  CAS  Google Scholar 

  30. K. M. Waldie, A. L. Ostericher, M. H. Reineke, et al., ACS Catalysis 8, 1313 (2018). https://doi.org/10.1021/acscatal.7b03396

    Article  CAS  Google Scholar 

  31. M. Horn, L. H. Schappele, G. Lang-Wittkowski et al., Chem. Eur. J. 19, 249 (2013). https://doi.org/10.1002/chem.201202839

    Article  CAS  PubMed  Google Scholar 

  32. Z. M. Heiden and A. P. Lathem, Organometallics 34, 1818 (2015). https://doi.org/10.1021/om5011512

    Article  CAS  Google Scholar 

  33. I. E. Golub, O. A. Filippov, N. V. Belkova, et al., J. Organomet. Chem. 865, 247 (2018). http://www.sciencedirect.com/science/article/pii/S0022328X18301852.

    Article  CAS  Google Scholar 

  34. S. Ilic, U. Pandey Kadel, Y. Basdogan, et al., J. Am. Chem. Soc. 140, 4569 (2018). https://doi.org/10.1021/jacs.7b13526

    Article  CAS  PubMed  Google Scholar 

  35. I. E. Golub, O. A. Filippov, V. A. Kulikova, et al., Molecules 25, 2920 (2020). https://doi.org/10.3390/molecules25122920

    Article  CAS  PubMed Central  Google Scholar 

  36. I. E. Golub, O. A. Filippov, E. S. Gulyaeva, et al., Inorg. Chim. Acta 456, 113 (2017). https://doi.org/10.1016/j.ica.2016.10.037

    Article  CAS  Google Scholar 

  37. E. D. Voronova, I. E. Golub, A. Pavlov, et al., Inorg. Chem. 59, 12240 (2020). https://doi.org/10.1021/acs.inorgchem.0c01293

    Article  CAS  PubMed  Google Scholar 

  38. I. E. Golub, O. A. Filippov, N. V. Belkova, et al., Molecules 26, 3754 (2021). https://www.mdpi.com/1420-3049/26/12/3754.

    Article  CAS  Google Scholar 

  39. Y. Zhao and D. Truhlar, Theor. Chem. Acc. 120, 215 (2008). https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  40. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D.01, Gaussian, Inc. (Wallingford, CT, USA, 2009).

    Google Scholar 

  41. R. Krishnan, J. S. Binkley, R. Seeger, et al., J. Chem. Phys. 72, 650 (1980). https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  42. G. A. Adrienko, Chemcraft, Version 1.8 (build 530) (http://www.chemcraftprog.com, 2017).

  43. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 113, 6378 (2009). https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  44. C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 111, 408 (2007). https://doi.org/10.1021/jp065403l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. I. B. Sivaev, V. I. Bregadze, Coord. Chem. Rev. 270–271, 75 (2014). https://doi.org/10.1016/j.ccr.2013.10.017

    Article  CAS  Google Scholar 

  46. T. A. Keith, AIMAll (Version 15.05.18) (TK Gristmill Software, Overland Park KS, USA, 2015).

    Google Scholar 

  47. R. F. W. Bader, M. E. Stephens, J. Am. Chem. Soc. 97, 7391 (1975). https://doi.org/10.1021/ja00859a001

    Article  CAS  Google Scholar 

  48. R. F. W. Bader, A. Streitwieser, A. Neuhaus, et al., J. Am. Chem. Soc. 118, 4959 (1996). https://doi.org/10.1021/ja953563x

    Article  CAS  Google Scholar 

  49. Y.-G. Wang, N. H. Werstiuk, J. Comput. Chem. 24, 379 (2003). https://doi.org/10.1002/jcc.10188

    Article  CAS  PubMed  Google Scholar 

  50. C. F. Matta, R. J. Boyd, A. D. Becke, The Quantum Theory of Atoms in Molecules: from Solid State to DNA and Drug Design (Wiley-VCH, Weinheim, 2007).

    Book  Google Scholar 

  51. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon Press, Oxford, 1994).

    Google Scholar 

  52. P. L. Popelier, Atoms in Molecules: An Introduction (Prentice Hall, London, 2000).

    Google Scholar 

  53. C. Matta, R. J. Boyd, Quantum Theory of Atoms in Molecules: Recent Progress in Theory and Application (Wiley-VCH, New York, 2007).

    Book  Google Scholar 

  54. E. Espinosa, I. Alkorta, I. Rozas, et al., Chem. Phys. Lett. 336, 457 (2001). https://doi.org/10.1016/s0009-2614(01)00178-6

    Article  CAS  Google Scholar 

  55. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998). https://doi.org/10.1016/s0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  56. N. W. Johnson, Can. J. Math. 18, 169 (1966). https://doi.org/10.4153/CJM-1966-021-8

    Article  Google Scholar 

  57. Z. Laila, F. Abi-Ghaida, S. Al Anwar, et al., Main Group Chem. 14, 301 (2015). https://doi.org/10.3233/MGC-150173

    Article  CAS  Google Scholar 

  58. K. Y. Zhizhin, E. Malinina, I. Polyakova, et al., Russ. J. Inorg. Chem. 47, 1168 (2002).

    Google Scholar 

  59. V. M. Retivov, E. Y. Matveev, M. V. Lisovskiy, et al., Russ. Chem. Bull. 59, 550 (2010). https://doi.org/10.1007/s11172-010-0123-2

    Article  CAS  Google Scholar 

  60. I. N. Klyukin, A. S. Kubasov, I. P. Limarev, et al., Polyhedron 101, 215 (2015). https://doi.org/10.1016/j.poly.2015.09.025

    Article  CAS  Google Scholar 

  61. V. K. Kochnev, V. V. Avdeeva, L. V. Goeva, et al., Russ. J. Inorg. Chem. 57, 331 (2012). https://doi.org/10.1134/S003602361203014X

    Article  CAS  Google Scholar 

  62. V. K. Kochnev, V. V. Avdeeva, E. A. Malinina, et al., Russ. J. Inorg. Chem. 59, 706 (2014). https://doi.org/10.1134/S0036023614070079

    Article  CAS  Google Scholar 

  63. A. P. Zhdanov, K. A. Zhdanova, A. Y. Bykov, et al., Polyhedron 139, 125 (2018). https://doi.org/10.1016/j.poly.2017.09.050

    Article  CAS  Google Scholar 

  64. S. G. Shore, E. J. M. Hamilton, A. N. Bridges, et al., Inorg. Chem. 42, 1175 (2003). https://doi.org/10.1021/ic020540s

    Article  CAS  PubMed  Google Scholar 

  65. E. S. Shubina, E. V. Bakhmutova, A. M. Filin, et al., J. Organomet. Chem. 657, 155 (2002). https://doi.org/10.1016/S0022-328X(02)01380-3

    Article  CAS  Google Scholar 

  66. I. B. Sivaev, V. I. Bragin, A. V. Prikaznov, et al., Collect. Czech. Chem. Commun. 72, 1725 (2007). https://doi.org/10.1135/cccc20071725

    Article  CAS  Google Scholar 

  67. O. A. Filippov, N. V. Belkova, L. M. Epstein, et al., Comput. Theor. Chem. 998, 129 (2012). https://doi.org/10.1016/j.comptc.2012.07.007

    Article  CAS  Google Scholar 

  68. A. M. Mebel, O. P. Charkin, M. Buehl, et al., Inorg. Chem. 32, 463 (1993). https://doi.org/10.1021/ic00056a020

    Article  CAS  Google Scholar 

  69. I. B. Sivaev, P. V. Petrovskii, A. M. Filin, et al., Russ. Chem. Bull. 50, 1115 (2001). https://doi.org/10.1023/A:1011306410852

    Article  CAS  Google Scholar 

  70. N. V. Belkova, L. M. Epstein, O. A. Filippov, et al., Chem. Rev. (Washington, DC) 116, 8545 (2016). https://doi.org/10.1021/acs.chemrev.6b00091

    Article  CAS  Google Scholar 

  71. E. Rzeszotarska, I. Novozhilova, P. Kaszyński, Inorg. Chem. 56, 14351 (2017). https://doi.org/10.1021/acs.inorgchem.7b02477

    Article  CAS  PubMed  Google Scholar 

  72. P. Brint, E. F. Healy, T. R. Spalding, et al., J. Chem. Soc., Dalton. Trans. 2515 (1981). https://doi.org/10.1039/DT9810002515

  73. W. Preetz, G. Peters, Eur. J. Inorg. Chem. 1999, 1831 (1999). https://doi.org/10.1002/(SICI)1099-0682(199911)1999:11<1831::AID-EJIC1831>3.0.CO;2-J

    Article  Google Scholar 

  74. R. M. Minyaev, V. I. Minkin, T. N. Gribanova, et al., Russ. Chem. Bull. 53, 1159 (2004). https://doi.org/10.1023/B:RUCB.0000042268.54392.50

    Article  CAS  Google Scholar 

  75. V. K. Kochnev, V. V. Avdeeva, E. A. Malinina, et al., Russ. J. Inorg. Chem. 58, 793 (2013). https://doi.org/10.1134/S0036023613070152

    Article  CAS  Google Scholar 

  76. O. Bondarev, Y. V. Sevryugina, S. S. Jalisatgi, et al., Inorg. Chem. 51, 9935 (2012). https://doi.org/10.1021/ic3014267

    Article  CAS  PubMed  Google Scholar 

  77. N. V. Belkova, O. A. Filippov, E. S. Shubina, Chem. Eur. J. 24, 1464 (2018). https://doi.org/10.1002/chem.201704203

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was financially supported by the Russian Science Foundation (grant no. 19-73-00309). L.M.E., O.A.F., N.V.B., and E.S.S. thank the Ministry of Science and Higher Education of the Russian Federation for the partial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. E. Golub or E. S. Shubina.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golub, I.E., Filippov, O.A., Belkova, N.V. et al. The Mechanism of Halogenation of Decahydro-closo-Decaborate Dianion by Hydrogen Chloride. Russ. J. Inorg. Chem. 66, 1639–1648 (2021). https://doi.org/10.1134/S0036023621110073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621110073

Keywords:

Navigation