Skip to main content
Log in

Influence of Tension and Compression on the Band Structure of Carbon Nanotubes as Probed by the Cylindrical Wave Method

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of uniaxial deformation on the band structure of chiral ((8,7), (9,6), (10,5), and (12,1)) and achiral ((7,7), (13,0), (12,0), and (13,0)) nanotubes ~10 Å in diameter of different geometry has been calculated by linearized augmented cylindrical wave method. The results have been compared with the effects of nanotube twisting on the electronic properties of these compounds. It has been found that perturbation of the band structure under the action of these two types of mechanical deformations can be sharply different. In the armchair (7,7) tube and the (8,7) tube, which is sometimes called “the almost armchair” tube because of the proximity of indices n1 = 8 and n2 = 7, the band structure changes sharply upon tube twisting, but remains almost unperturbed upon uniaxial tension and compression. On the contrary, in semiconducting zigzag (13,0) and (11,0) tubes and “almost zigzag” (12,1) tubes, the effect of tube twisting is very weak, while axial stretching is accompanied by strong changes in dispersion curves near the Fermi level up to a change in the alternation of the frontier bands. In quasi-metallic (12,0) and (9,6) nanotubes, all types of deformation—tension, compression, and twisting—induce a sharp broadening of the band gap to give semiconductors. In the semiconductor chiral (10,5) nanotubes, both twisting and uniaxial deformations lead to strong changes in the band structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  2. P. N. D’yachkov, Electronic Properties and Applications of Nanotubes (Laboratoriya znanii, Moscow, 2020) [in Russian].

  3. V. Sazonova, Y. Yaish, H. Üstünel, et al., Nature 431, 284 (2004). https://doi.org/10.1038/nature02905

    Article  CAS  PubMed  Google Scholar 

  4. T. W. Tombler, C. Zhou, L. Alexseyev, et al., Nature 405, 769 (2000). https://doi.org/10.1038/35015519

    Article  CAS  PubMed  Google Scholar 

  5. C. Gómez-Navarro, P. J. de Pablo, and J. Gómez-Herrero, Adv. Mater. 16, 549 (2004). https://doi.org/10.1007/s10854-006-8094-7

    Article  CAS  Google Scholar 

  6. V. Semet, V. T. Binh, D. K. Guillot, et al., Appl. Phys. Lett. 87, 223103 (2005). https://doi.org/10.1063/1.2136229

    Article  CAS  Google Scholar 

  7. T. Cohen-Karni, L. Segev, S. R. Cohen, et al., Nature Nanotechnol. 1, 36 (2006). https://doi.org/10.1038/nnano.2006.57

    Article  CAS  Google Scholar 

  8. T. Changa, Appl. Phys. Lett. 90, 201910 (2007). https://doi.org/10.1063/1.2739325

    Article  CAS  Google Scholar 

  9. H. G. Craighead, Science 290, 1532 (2000). https://doi.org/10.1126/science.290.5496.1532

    Article  CAS  PubMed  Google Scholar 

  10. M. Z. Wang, Carbon Nanotube NEMS/Encyclopedia of Nanotechnology, Ed. by B. Bhushan (Springer, Dordrecht, 2015).

    Google Scholar 

  11. H. Y. Chiu, P. Hung, H. W. C. Postma, et al., Nano Lett. 8, 4342 (2008). https://doi.org/10.1021/nl802181c

    Article  CAS  PubMed  Google Scholar 

  12. J. Chaste, A. Eichler, J. Moser, et al., Nature Nanotechnol. 7, 301 (2012). https://doi.org/10.1038/nnano.2012.42

    Article  CAS  Google Scholar 

  13. J. Moser, J. Guttinger, A. Eichler, et al., Nature Nanotechnol. 8, 493 (2013). https://doi.org/10.1038/ncomms3843

    Article  CAS  Google Scholar 

  14. K. Jensen, J. Weldon, H. Garcia, et al., Nano Lett. 7, 3508 (2007). https://doi.org/10.1021/nl0721113

    Article  CAS  PubMed  Google Scholar 

  15. P. N. D’yachkov, Russ. J. Inorg. Chem. 66, 852 (2021). https://doi.org/10.1134/S0036023621060085

    Article  Google Scholar 

  16. L. Yang, M. P. Anantram, J. Han, et al., Phys. Rev. 60, 13874. https://doi.org/10.1103/PhysRevB.60.13874

  17. L. Yang and J. Han, Phys. Rev. Lett. 85, 154 (2000). https://doi.org/10.1103/PhysRevLett.85

    Article  CAS  PubMed  Google Scholar 

  18. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997). https://doi.org/10.1103/PhysRevLett.78.1932

    Article  CAS  Google Scholar 

  19. J. E. Bundera and J. M. Hill, J. Appl. Phys. 107, 023511 (2010). https://doi.org/10.1063/1.3289320

    Article  CAS  Google Scholar 

  20. R. Heyd, A. Charlier, and E. McRae, Phys. Rev. B 55, 6820 (1997). https://doi.org/10.1103/PhysRevB.55.6820

    Article  CAS  Google Scholar 

  21. S. Dmitrović, I. Milošević, M. Damnjanović, et al., J. Phys. Chem. C 119, 13922 (2015). https://doi.org/10.1021/acs.jpcc.9b10718

    Article  CAS  Google Scholar 

  22. A. Rochefort, P. Avouris, F. Lesage, et al., Phys. Rev. B 60, 13824 (1999). https://doi.org/10.1103/PhysRevB.60.13824

    Article  CAS  Google Scholar 

  23. S. W. D. Bailey, D. Tomanek, Y.-K. Kwon, et al., Europhys. Lett. 59, 75 (2002). https://doi.org/10.1209/epl/i2002-00161-8

    Article  CAS  Google Scholar 

  24. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 76, 195411 (2018). https://doi.org/10.1103/PhysRevB.76.195411

    Article  CAS  Google Scholar 

  25. P. N. D’yachkov, Quantum Chemistry of Nanotubes: Electronic Cylindrical Waves (CRC Press, Taylor and Francis, London, 2019).

    Book  Google Scholar 

  26. P. N. D’yachkov, Russ. J. Inorg. Chem. 63, 55 (2018). https://doi.org/10.1134/S0036023618010072

    Article  Google Scholar 

Download references

Funding

This work was performed in the framework of the State assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. D’yachkov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachkov, E.P., D’yachkov, P.N. Influence of Tension and Compression on the Band Structure of Carbon Nanotubes as Probed by the Cylindrical Wave Method. Russ. J. Inorg. Chem. 66, 1688–1695 (2021). https://doi.org/10.1134/S0036023621110048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621110048

Keywords:

Navigation