Skip to main content
Log in

Bioactive Ceramics Based on ZrO2 Doped with Ta2O5: Preparation and Properties

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The properties of zirconium ceramics can be improved by combination with calcium phosphate compounds, which impart bioactivity to the bioinert material. The effect of Ta2O5 on some properties of ceramics was studied. Tantalum oxide doping increases the radiopacity of calcium phosphate zirconium ceramics, but deteriorates the mechanical and bioactive properties. This ceramics can be proposed as a material for replacing bone tissue defects. The material was shown to have sufficient strength, radiopacity, and developed microrelief and to contain a bioactive phase. The obtained materials meet conditions necessary for the replacement therapy. The method can be used to produce a material with specified characteristics for the manufacture of individual implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. I. A. Kirilova, M. A. Sadovoi, V. T. Podorozhnaya et al., Khir. Pozvonoch. 4, 52 (2013). https://doi.org/10.14531/ss2013.4.52-62

    Article  Google Scholar 

  2. A. Afzal, Mater. Express 4, 1 (2014). https://doi.org/10.1166/mex.2014.1148

    Article  CAS  Google Scholar 

  3. V. V. Smirnov, A. I. Krylov, S. V. Smirnov, et al., Inorg. Mater. 53, 980 (2017). https://doi.org/10.1134/S0020168517090151

    Article  CAS  Google Scholar 

  4. T. O. Obolkina, M. A. Goldberg, S. V. Smirnov, et al., Inorg. Mater. 56, 182 (2020). https://doi.org/10.31857/S0002337X20020153

    Article  CAS  Google Scholar 

  5. V. Covacci, N. Bruzzese, G. Maccauro, et al., Biomaterials 20, 371 (1999). https://doi.org/10.1016/S0142-9612(98)00182-3

    Article  CAS  PubMed  Google Scholar 

  6. I. A. Talashova, T. A. Silantieva, N. A. Kononovich, and S. N. Luneva, Bull. Sib. Med. 11, 62 (2012). https://doi.org/10.20538/1682-0363-2012-3-62-68

    Article  Google Scholar 

  7. M. M. Stevens, Mater. Today 11, 18 (2008). https://doi.org/10.1016/S1369-7021(08)70086-5

    Article  CAS  Google Scholar 

  8. T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, and A. V. Kuznetsov, Glass Ceram. 64, 102 (2007). https://doi.org/10.1007/s10717-007-0027-2

    Article  CAS  Google Scholar 

  9. V. V. Silva, F. S. Lameiras, and Z. I. Lobato, J. Biomed. Mater. Res. 63, 583 (2002). https://doi.org/10.1002/jbm.10308

    Article  CAS  PubMed  Google Scholar 

  10. M. A. Goldberg, T. Obolkina, S. Smirnov, et al., Materials 13, 2789 (2020). https://doi.org/10.3390/ma13122789

    Article  CAS  PubMed Central  Google Scholar 

  11. T. O. Obolkina, M. A. Gol’dberg, S. V. Smirnov, et al. Dokl. Chem. 493, 99 (2020). https://doi.org/10.1134/S0012500820070010

    Article  CAS  Google Scholar 

  12. Y. M. Kong, C. J. Bae, S. H. Lee, et al., Biomaterials 26, 509 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.061

    Article  CAS  PubMed  Google Scholar 

  13. T. J. Webster, E. A. Massa-Schlueter, J. L. Smith, and E. B. Slamovich, Biomaterials 25, 2111 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  14. S. Deb, S. Abdulghani, and J. C. Behiri, Biomaterials 23, 3387 (2002). https://doi.org/10.1016/s0142-9612(02)00039-x

    Article  CAS  PubMed  Google Scholar 

  15. X. Wang, J. Ye, and Y. Wang, Acta Biomater. 3, 757 (2007). https://doi.org/10.1016/j.actbio.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  16. J. Aberg, H. B. Henriksson, H. Engqvist, et al., J. Biomed. Mater. Res. A 100, 1269 (2012). https://doi.org/10.1002/jbm.a.34065

    Article  CAS  PubMed  Google Scholar 

  17. K. S. Coomaraswamy, P. J. Lumley, and M. P. Hofmann, J. Endod. 33, 295 (2007). https://doi.org/10.1016/j.joen.2006.11.018

    Article  PubMed  Google Scholar 

  18. M. Riaz, R. Zia, F. Saleemi, et al., Mater. Sci. Poland 34, 13 (2016). https://doi.org/10.1515/msp-2016-0013

    Article  CAS  Google Scholar 

  19. K. S. Min, H. S. Chang, J. M. Bae, et al., J. Endod. 33, 1342 (2007). https://doi.org/10.1016/j.joen.2007.07.012

    Article  PubMed  Google Scholar 

  20. C. Chen, S. C. Hsieh, N. C. Teng, et al., J. Endod. 40, 251 (2014). https://doi.org/10.1016/j.joen.2013.07.006

    Article  PubMed  Google Scholar 

  21. S. A. Aleksandrova, O. I. Aleksandrova, V. P. Khomutov, et al., Tsitologiya 60, 987 (2018). https://doi.org/10.1134/S0041377118120052

    Article  Google Scholar 

  22. T. Kokubo and H. Takadama, Biomaterials 27, 2907 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  23. X. Miao, Y. Hu, J. Liu, and X. Huang, Mater. Sci. Eng. C 27, 257 (2007). https://doi.org/10.1016/j.msec.2006.03.009

    Article  CAS  Google Scholar 

  24. G. Sponchia, M. Moshtaghioun, A. Benedetti, et al., Scr. Mater. 130, 128 (2017). https://doi.org/10.1016/j.scriptamat.2016.11.021

    Article  CAS  Google Scholar 

  25. A. P. Solonenko, A. I. Blesman, D. A. Polonyankin, and V. A. Gorbunov, Russ. J. Inorg. Chem. 63, 993 (2018). https://doi.org/10.1134/S0036023618080211

    Article  CAS  Google Scholar 

  26. S. Hansson and M. Norton, J. Biomech. 8, 829 (1999). https://doi.org/10.1016/s0021-9290(99)00058-5

    Article  Google Scholar 

  27. S. M. Barinov, Russ. Chem. Rev. 79, 15 (2010). https://doi.org/10.1070/RC2010v079n01ABEH004098

    Article  CAS  Google Scholar 

  28. Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, Biomaterials 27, 2414 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.025

    Article  CAS  PubMed  Google Scholar 

  29. A. A. El-Rashidy, J. A. Roether, L. Harhaus, et al., Acta Biomater. 62, 1 (2017). https://doi.org/10.1016/j.actbio.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  30. D. N. Grishchenko, A. B. Slobodyuk, V. G. Kuryavyi, and M. A. Medkov, Russ. J. Inorg. Chem. 65, 1606 (2020). https://doi.org/10.1134/S0036023620100083

    Article  CAS  Google Scholar 

  31. A. G. Stepanov, S. D. Arutyunov, A. B. Shekhter, and T. G. Rudenko, Modern Probl. Sci. Educat. 2 (2018). https://doi.org/10.17513/spno.27506

  32. E. I. Anastasova and S. R. Gabdullina, et al., ACS Appl. Bio Mater. 2, 4427 (2019). https://doi.org/10.1021/acsabm.9b00615

    Article  CAS  Google Scholar 

  33. Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications, Ed. by M. Textor, C. Sittig, V. Frauchiger, and P. Thomsen (Springer, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Grishchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishchenko, D.N., Golub, A.V., Kuryavyi, V.G. et al. Bioactive Ceramics Based on ZrO2 Doped with Ta2O5: Preparation and Properties. Russ. J. Inorg. Chem. 66, 1592–1599 (2021). https://doi.org/10.1134/S0036023621100065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621100065

Keywords:

Navigation