Skip to main content
Log in

Hydrothermal Synthesis and Properties of Chitosan–Silver Nanocomposites

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A facile “green chemistry” hydrothermal method of chitosan-Ag nanoparticles (NPs) synthesis has been proposed. Chitosans of different molecular weight (from 20 to 1200 kDa) have been used as reducing agents and particle stabilizers. The obtained chitosan–Ag nanocomposites have been studied by UV–Vis and IR spectroscopy, X-ray powder diffraction analysis, and transmission electron microscopy. Nanocomposites have a “core-shell” structure, spherical shape with size up to 60.0 nm and the surface ξ-potential value >40.0 mV. Optimal parameters of synthesis (time, temperature, molecular weight of chitosan) of chitosan–Ag nanoparticles with highest antimicrobial activity against gram-positive and gram-negative bacteria and fungi have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. G. Correa, F. B. Martínez, C. P. Vidal, et al., Beilstein J. Nanotechnol. 11, 1450 (2020). https://doi.org/10.3762/bjnano.11.129

    Article  CAS  Google Scholar 

  2. Y. A. Krutyakov, A. A. Kudrinskiy, A. Y. Olenin, et al., Russ. Chem. Rev. 77, 233 (2008). https://doi.org/10.1070/RC2008v077n03ABEH003751

    Article  CAS  Google Scholar 

  3. Yu. A. Bukina and E. A. Sergeeva, Vest. Kazan. Tekhnol. Un-ta 15, 170 (2012).

    Google Scholar 

  4. E. V. Kryzhanovskaya, V. P. Varlamov, A. Ya. Samuilenko, et al., Sel’skokhoz. Biol. 6, 119 (2008).

    Google Scholar 

  5. G. Gil, S. del Mónaco, P. Cerrutti, et al., Biotechnol. Lett. 26, 569 (2004). https://doi.org/10.1023/B:BILE.0000021957.37426.9b

    Article  CAS  PubMed  Google Scholar 

  6. V. P. Varlamov, A. V. Il’ina, B. Ts. Shagdarova, et al., Biochemistry Moscow 85, 154 (2020). https://doi.org/10.1134/S0006297920140084

    Article  CAS  Google Scholar 

  7. A. Abioye, A. Sanyaolu, P. Dudzinska, et al., Pharm. Nanotechnol. 8, 33 (2020). https://doi.org/10.2174/2211738507666191021102256

  8. J. Li, G. Zhang, L. Wang, et al., Talanta 140, 204 (2015). https://doi.org/10.1016/j.talanta.2015.03.050

    Article  CAS  PubMed  Google Scholar 

  9. S. Sharma, P. Sanpui, A. Chattopadhyay, et al., RSC Adv. 2, 5837 (2012). https://doi.org/10.1039/C2RA00006G

    Article  CAS  Google Scholar 

  10. D. Wei and W. Qian, Colloids Surf. 62, 136 (2008). https://doi.org/10.1016/j.colsurfb.2007.09.030

    Article  CAS  Google Scholar 

  11. P. Sanpui, A. Murugadoss, P. V. Durga Prasad, et al., Int. J. Food Microbiol. 124, 142 (2008). https://doi.org/10.1016/j.ijfoodmicro.2008.03.004

    Article  CAS  PubMed  Google Scholar 

  12. A. M. Youssef, M. S. Abdel-Aziz, and S. M. El-Sayed, Int. J. Biol. Macromol. 69, 185 (2014). https://doi.org/10.1016/j.ijbiomac.2014.05.047

    Article  CAS  PubMed  Google Scholar 

  13. L. Huang, M. L. Zhai, D. W. Long, et al., J. Nanopart. Res. 10, 1193 (2008). https://doi.org/10.1007/s11051-007-9353-0

    Article  CAS  Google Scholar 

  14. A. Y. Olenin, Russ. J. Inorg. Chem. 65, 581 (2020). https://doi.org/10.1134/S0036023620040154

    Article  CAS  Google Scholar 

  15. M. K. A. Al-Muhanna, K. S. Hileuskaya, V. I. Kulikouskaya, et al., Colloid J 77, 677 (2015). https://doi.org/10.1134/S1061933X15060022

    Article  CAS  Google Scholar 

  16. K. Hileuskaya, A. Ladutska, V. Kulikouskaya, et al., Colloids Surf., A 585, 124141 (2020). https://doi.org/10.1016/j.colsurfa.2019.124141

    Article  CAS  Google Scholar 

  17. B. G. Ershov, Mikrosist. Tekh. 12, 31 (2003).

    Google Scholar 

  18. A. Kumar and C. K. Dixit, Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Ed. by S. Nimesh, R. Chandra, and N. Gupta (Woodhead Publishing, 2017). https://doi.org/10.1016/B978-0-08-100557-6.00003-1

  19. I. V. Novikov, M. A. Pigaleva, S. S. Abramchuk, et al., Carbohydr. Res. 190, 103 (2018). https://doi.org/10.1016/j.carbpol.2018.02.07

    Article  CAS  Google Scholar 

  20. S. Kumar-Krishnan, E. Prokhorov, M. Hernández-Iturriaga, et al., Eur. Polym. J. 67, 242 (2015). https://doi.org/10.1016/j.eurpolymj.2015.03.066

    Article  CAS  Google Scholar 

  21. A. N. Kraskouski, V. V. Nikalaichuk, V. I. Kulikouskaya, et al., Theor. Exp. Chem. 56, 243 (2020). https://doi.org/10.1007/s11237-020-09655-1

    Article  CAS  Google Scholar 

  22. M. F. Queiroz, MeloK. R. Teodosio, D. Sabry, et al., Mar. Drugs 13, 141 (2014). https://doi.org/10.3390/md13010141

    Article  CAS  PubMed Central  Google Scholar 

  23. M. Pieróg, M. Gierszewska-Drużyńska, and J. Ostrowska-Czubenko, Prog. Chem. Appl. Chitin Its Deriv. 14, 75 (2009).

    Google Scholar 

  24. I. V. Novikov, M. A. Pigaleva, E. E. Levin, et al., Colloid Polym. Sci. 298, 1135 (2020). https://doi.org/10.1007/s00396-020-04683-8

    Article  CAS  Google Scholar 

  25. R. K. Saini, A. K. Srivastava, P. K. Gupta, et al., Chem. Phys. Lett. 511, 326 (2011). https://doi.org/10.1016/j.cplett.2011.06.044

    Article  CAS  Google Scholar 

  26. I. S. Chashchin, S. S. Abramchuk, and L. N. Nikitin, Dokl. Phys. Chem. 475 (1), 134 (2017). https://doi.org/10.1134/S0012501617070041

    Article  CAS  Google Scholar 

  27. L. O. Cinteza, C. Scomoroscenco, S. N. Voicu, et al., Nanomater. 8, 826 (2018). https://doi.org/10.3390/nano8100826

    Article  CAS  Google Scholar 

  28. M. Zienkiewicz-Strzałka, A. Deryło-Marczewska, Y. A. Skorik, et al., Int. J. Mol. Sci. 21, 166 (2020). https://doi.org/10.3390/ijms21010166

    Article  CAS  Google Scholar 

  29. V. Holubnycha, O. Kalinkevich, O. Ivashchenko, et al., Nanoscale Res. Lett. 13, 71 (2018). https://doi.org/10.1186/s11671-018-2482-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the State Committee for Science and Technology and the Belarusian Republican Foundation for Fundamental Research (project no. X20SRBG-002).

Author information

Authors and Affiliations

Authors

Contributions

K.S. Hileuskaya devised and developed experiment, M.E. Mashkin and A.N. Kraskouski synthesized samples and conducted physicochemical study, V.S. Kabanava performed IR spectral study, E.A. Stepanova and I.I. Kuzminski carried out the screening of antimicrobial activity of prepared samples. V.I. Kulikouskaya took part in data treatment. K.S. Hileuskaya, A.N. Kraskouski, and V.E. Agabekov participated in paper writing. All the authors were involved in results discussion.

Corresponding author

Correspondence to K. S. Hileuskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ADDITIONAL INFORMATION

This paper was reported on the Sixth Interdisciplinary Scientific Forum with International Participation “New Materials and Promising Technologies”, Moscow, November 23–26, 2020. https://n-materials.ru.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hileuskaya, K.S., Mashkin, M.E., Kraskouski, A.N. et al. Hydrothermal Synthesis and Properties of Chitosan–Silver Nanocomposites. Russ. J. Inorg. Chem. 66, 1128–1134 (2021). https://doi.org/10.1134/S0036023621080064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621080064

Keywords:

Navigation