Skip to main content
Log in

Kinetic and Biological Studies of Nickel(II) and Copper(II) Macrocyclic Complexes

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Macrocyclic ligands offer an efficient means to modify metal complex geometry, to regulate its kinetics, electronic structure, and reactivity. Here, the kinetic studies of [MIIL]Cl2 tetraazamacrocyclic complexes (M = Ni and Cu, and L is dichloro-[2,4,9,13,15,20-hexamethyldibenzo-1,4,8,11-tetraazacyclotetra-decatetraene]) have been taken into the account. The kinetic data have indicated the greater inertness of the macrocyclic ligands towards NiII/CuII transition metals. This is attributed to the alteration in the coordination environment of metal octahedral to square planar conformation. The result is compatible with the solvating process of released metal ion and macrocyclic ligands. In addition, the biological activity of both the complexes against Gram +ve and Gram –ve bacteria has been carried out. The results indicate that the CuII complex can be served as a potential model for antimicrobial activity against the Gram +ve and Gram –ve bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. V. Lifintseva, A. S. Burlov, V. G. Vlasenko, et al., Russ. J. Coord. Chem. 45, 867 (2019). https://doi.org/10.1134/S1070328419120054

    Article  CAS  Google Scholar 

  2. Y. S. Zhang, Z. M. Wang, H. K. Lin, et al., Int. J. Chem. Kinet. 31, 804 (1999). https://doi.org/10.1002/(SICI)1097-4601(1999)31:11%-3C804::AID-JCK7%3E3.0.CO;2-O

    Article  CAS  Google Scholar 

  3. A. S. Burlov, V. G. Vlasenko, T. V. Lifintseva, et al., Russ. J. Coord. Chem. 46, 485 (2020). https://doi.org/10.1134/S1070328420070015

    Article  Google Scholar 

  4. V. Sharma, V. K. Vashistha, and D. K. Das, Biointerface Res. Appl. 11, 7393 (2021). https://doi.org/10.33263/BRIAC111.73937399

    Article  CAS  Google Scholar 

  5. A. Kumar, V. K. Vashistha, S. Ahmed, et al., Anal. Bioanal. Electrochem. 12, 922 (2020).

    CAS  Google Scholar 

  6. V. K. Vashistha, D. K. Das, A. Yadav, et al., Anal. Bioanal. Electrochem. 12, 318 (2020). http://www.abechem.com/article_38852.html.

  7. V. K. Vashistha, A. Kumar, A. Inorg. Chem. Commun. 112, 107700 (2020). https://doi.org/10.1016/j.inoche.2019.107700

    Article  CAS  Google Scholar 

  8. Sweety, V. K. Vashistha, A. Kumar, et al., Russ. J. Electrochem. 55, 161 (2019). https://doi.org/10.1134/S1023193519020113

    Article  CAS  Google Scholar 

  9. A. Kumar and V. K. Vashistha, RSC Adv. 9, 13243 (2019). https://doi.org/10.1039/C9RA02169H

  10. A. Kumar, V. K. Vashistha, P. Tevatia, et al., Anal. Bioanal. Electrochem. 8, 848 (2016).

    Google Scholar 

  11. L. W. Xue, Y. J. Han, and X. Q. Luo, Russ. J. Coord. Chem. 46, 145 (2020). https://doi.org/10.1134/S1070328420020098

    Article  CAS  Google Scholar 

  12. H. Elias, Coord. Chem. Rev. 187, 37 (1999). https://doi.org/10.1016/S0010-8545(98)00227-6

    Article  CAS  Google Scholar 

  13. M. S. Vergara, R. Salcedo, B. Molina, et al., Spectrochim. Acta A 200, 158 (2018).

    Article  Google Scholar 

  14. Y. Guo, Q. Ge, H. Lin, et al., Trans. Metal Chem. 28, 668 (2003). https://doi.org/10.1023/A:1025409918259

    Article  CAS  Google Scholar 

  15. V. K. Vashistha, A. Kumar, Russ. J. Inorg. Chem. 65, 2028 (2020).

    Article  CAS  Google Scholar 

  16. V. K. Vashistha, A. Kumar, V. K. Kundi, et al., Russ. J. Inorg. Chem. 66, 61 (2021).

    Article  CAS  Google Scholar 

  17. A. Kumar, V. K. Vashistha, P. Tevatia, et al., Spectrochim. Acta A 176, 123 (2017). https://doi.org/10.1016/j.saa.2016.12.011

    Article  CAS  Google Scholar 

  18. M. G. Basallote, J. Durán, Fernández-Trujillo, et al., Polyhedron 20, 75 (2001). https://doi.org/10.1016/S0277-5387(00)00589-1

    Article  CAS  Google Scholar 

  19. C. E. Castillo, M. A. Máñez, M. G. Basallote, et al., Dalton Trans. 41, 5617 (2012). https://doi.org/10.1039/C2DT30223C

    Article  CAS  PubMed  Google Scholar 

  20. J. Gao, J. H. Reibenspies, A. E. Martell, J. Inorg. Biochem. 94, 272 (2003). https://doi.org/10.1016/S0162-0134(03)00008-4

    Article  CAS  PubMed  Google Scholar 

  21. L. C. Siegfried and T. A. Kaden, J. Phys. Org. Chem. 5, 549 (1992). https://doi.org/10.1002/poc.610050818

    Article  CAS  Google Scholar 

  22. C. Saudan, V. Balzani, M. Gorka, et al., Chem-Eur. J. 10, 899 (2004). https://doi.org/10.1002/chem.200305255

    Article  CAS  PubMed  Google Scholar 

  23. G. Bergamini, C. Saudan, P. Ceroni, et al., J. Am. Chem. Soc. 126, 16466 (2004). https://doi.org/10.1021/ja0450814

    Article  CAS  PubMed  Google Scholar 

  24. D. P. Singh, K. Kumar, S. S. Dhiman, et al., J. Enzyme Inhib. Med. Chem. 25, 21 (2010). https://doi.org/10.3109/14756360902932750

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to GLA University, Mathura and SAIF Panjab University Chandigarh for completing the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Ethics declarations

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashistha, V.K., Kumar, A. Kinetic and Biological Studies of Nickel(II) and Copper(II) Macrocyclic Complexes. Russ. J. Inorg. Chem. 66, 834–838 (2021). https://doi.org/10.1134/S0036023621060218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060218

Keywords:

Navigation