Skip to main content
Log in

Phase Equilibria, Critical Phenomena, and Extractive Crystallization of the Salt in the Sodium Chloride–Water–Diisopropylamine Ternary System

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Extractive crystallization is a promising method for preparing salts from their aqueous solutions. It is topical to carry out extractive crystallization so that reuse the solvent. One aim of our study was to find optimal conditions for the extractive crystallization of sodium chloride via studying phase equilibria and critical phenomena in the sodium chloride–water–diisopropylamine ternary system in the range 10.0–90.0°C. One more aim was to decide whether sodium chloride is useful for salting-out diisopropylamine from its aqueous solutions. The water–diisopropylamine system has a lower critical solution temperature (27.3°C). The phase-transition temperatures were evaluated by the visual polythermal method, and polythermal phase diagrams of mixtures of ternary system’s components were plotted. Temperature dependences of the critical solution composition and the distribution coefficient (Kd) of diisopropylamine between the aqueous and organic monotectic phases were elucidated. The maximum value of Kd (480) was reached at 90.0°С. The yield of NaCl crystals was found to increase with increasing amine concentration in the ternary mixtures. The highest sodium chloride yield (49%) from a water–salt solution containing 26 wt % salt was observed at 27.3°С after 90.0 wt % diisopropylamine was added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. A. Weingaertner, S. Lynn, and D. N. Hanson, Ind. Eng. Chem. Res. 30, 490 (1991). https://doi.org/10.1021/ie00051a009

    Article  CAS  Google Scholar 

  2. T. G. Zijlema, R. M. Geertman, G.-J. Witkamp, et al., Ind. Eng. Chem. Res. 39, 1330 (2000). https://doi.org/10.1021/ie990221h

    Article  CAS  Google Scholar 

  3. D. N. Hanson and S. Lynn, US Patent 4.879.042 (1989).

  4. A. Carton, S. Bolado, and M. Marcos, J. Chem. Eng. Data 45, 260 (2000). https://doi.org/10.1021/je990235u

    Article  CAS  Google Scholar 

  5. D. K. Brenner, E. W. Anderson, S. Lynn, et al., J. Chem. Eng. Data 37, 419 (1992). https://doi.org/10.1021/je00008a011

    Article  CAS  Google Scholar 

  6. S. Urréjola, A. Sánchez, and M. F. Hervello, J. Chem. Eng. Data 56, 2687 (2011). https://doi.org/10.1021/je100979d

    Article  CAS  Google Scholar 

  7. A. M. Ting, S. Lynn, and J. M. Prausnitz, J. Chem. Eng. Data 37, 252 (1992). https://doi.org/10.1021/je00006a032

    Article  CAS  Google Scholar 

  8. J. Mydlarz, A. Jones, and A. Millan, J. Chem. Eng. Data 34, 124 (1989). https://doi.org/10.1021/je00055a033

    Article  CAS  Google Scholar 

  9. Q. Zhai and Y. Jiang, et al., J. Chem. Eng. Data 49, 1070 (2004). https://doi.org/10.1021/je049914h

    Article  CAS  Google Scholar 

  10. M. T. Zafarani-Moattar, and S. Alireza, J. Chem. Eng. Data 42, 1241 (1997). https://doi.org/10.1021/je970060t

    Article  CAS  Google Scholar 

  11. A. R. Thompson and M. C. Molstad, Ind. Eng. Chem. 37, 1244 (1945). https://doi.org/10.1021/ie50432a031

    Article  CAS  Google Scholar 

  12. M. Hu, L. Jin, Y. Jiang, et al., J. Chem. Eng. Data 50, 1361 (2005). https://doi.org/10.1021/je050072b

    Article  CAS  Google Scholar 

  13. T. G. Zijlema, G. J. Witkamp, and G. M. Rosmalen, J. Chem. Eng. Data 44, 1338 (1999). https://doi.org/10.1021/je9900880

    Article  CAS  Google Scholar 

  14. T. G. Zijlema, H. Oosterhof, G. J. Witkamp, et al., in Separation and Purification by Crystallization (ACS Symposium Series, American Chemical Society, Washington DC, 1997). https://doi.org/10.1021/bk-1997-0667.ch019

  15. T. A. Al-Sahhaf and E. Kapetanovic, J. Chem. Eng. Data 42, 74 (1997). https://doi.org/10.1021/je960234r

    Article  CAS  Google Scholar 

  16. M. A. Mezhueva, V. V. Danilina, V. F. Kurskii, et al., Izv. Sarat. Un-ta. Nov. Ser. Ser. Khim. Biol. Ekol. 20, 146 (2020). https://doi.org/10.18500/1816-9775-2020-20-2-146-156

    Article  Google Scholar 

  17. M. E. Pozin, Mineral Salt Technology (Fertilizers, Pesticides, Industrial Salts, Oxides, and Acids) (Khimiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  18. A. A. Furman, M. P. Bel’dy, and I. D. Sokolov, Table Salt: Production and Use in the Chemical Industry (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  19. Chemical Encyclopedia, Ed. by I.L. Knunyants (Sov. Entsiklopediya, Moscow, 1988–1998) [in Russian].

  20. V. Ya. Anosov, M. I. Ozerova, and Yu.Ya. Fialkov, Fundamentals of Physical and Chemical Analysis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  21. K. K. Il’in and D. G. Cherkasov, Chem. Eng. Commun. 203, 642 (2016). https://doi.org/10.1080/00986445.2015.1076802

    Article  CAS  Google Scholar 

  22. R. E. Treybal, Liquid Extraction (McGraw-Hill, New York, 1963).

    Google Scholar 

  23. R. R. Davison, W. H. Smith, and D. W. Hood, J. Chem. Eng. Data 5, 420 (1960). https://doi.org/10.1021/je60008a005

    Article  CAS  Google Scholar 

  24. R. R. Davison, J. Chem. Eng. Data 13, 348 (1968). https://doi.org/10.1021/je60038a013

    Article  CAS  Google Scholar 

  25. R. M. Stephenson, J. Chem. Eng. Data 38, 625 (1993). https://doi.org/10.1021/je00012a039

    Article  CAS  Google Scholar 

  26. I. D. Mokhonova and D. G. Cherkasov, in Proceedings of the IX All-Russian Conference of Young Scientists with International Participation, Saratov, 2013, p. 10 (Kubik).

  27. Solubility Handbook: Binary Systems, Ed. by V. V. Kafarov (Akad. Nauk SSSR, Moscow, Books 1, 2, 1960, 1961) [in Russian].

  28. A. N. Kirgintsev, L. N. Trushnikova, and V. G. Lavrent’eva, Solubility of Inorganic Substances in Water (Khimiya, Leningrad, 1972) [in Russian].

    Google Scholar 

  29. V. V. Danilina, in Proceedings of the XIII Russian Annual Conference of Young Scientists and Post-Graduate Students, Moscow, 2017, p. 284 (IMET RAS).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Cherkasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkasov, D.G., Danilina, V.V. & Il’in, K.K. Phase Equilibria, Critical Phenomena, and Extractive Crystallization of the Salt in the Sodium Chloride–Water–Diisopropylamine Ternary System. Russ. J. Inorg. Chem. 66, 883–890 (2021). https://doi.org/10.1134/S0036023621060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621060073

Keywords:

Navigation