Skip to main content
Log in

Effect of Alkaline Medium on Hydrothermal Synthesis of Boehmite

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The transformation of gibbsite into boehmite upon hydrothermal treatment at 200°C in 1.5 wt % NaOH have been studied by X-ray powder diffraction, IR spectroscopy, Brunauer–Emmett–Teller, differential scanning calorimetry, and scanning electron microscopy. The stages of the process have been determined. The transformation of gibbsite into boehmite in an alkaline medium takes 1 h and is accompanied by the splitting of gibbsite into boehmite plates with an average particle size of ~1 μm. It has been shown that, upon hydrothermal treatment of gibbsite in a 1.5 wt % NaOH solution, lamellar boehmite particles are formed for 24 h. This makes it possible to recommend the synthesized powder boehmite to be used as an additive to oils, in the production of concrete, fire retardants, and as an intermediate phase in the synthesis of α‑Al2O3 powders

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. W. Cai, H. Li, and G. Zhang, J. Phys. Chem. Solids 71, 515 (2010). https://doi.org/10.1016/j.jpcs.2009.12.025

    Article  CAS  Google Scholar 

  2. J. Carneiro, D. M. Tobaldi, W. Hajjaji, et al., Waste Manag. 80, 371 (2018). https://doi.org/10.1016/j.wasman.2018.09.032

    Article  CAS  PubMed  Google Scholar 

  3. W. Cui, X. Zhang, C. I. Pearce, et al., Environ. Sci. Technol. 53, 11043 (2019). https://doi.org/10.1021/acs.est.9b02693

    Article  CAS  PubMed  Google Scholar 

  4. R. W. Filho, G. D. Rocha, C. R. Montes, et al., Mater. Res. 19, 659 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0019

    Article  Google Scholar 

  5. A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, et al., Ceram. Int. 44, 13815 (2018). https://doi.org/10.1016/j.ceramint.2018.04.225

    Article  CAS  Google Scholar 

  6. T. L. Simonenko, V. M. Ivanova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1753 (2019). https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  7. S. R. Egorova, A. N. Mukhamed’yarova, O. V. Neste-rova, et al., Coatings 8 (1), 30 (2018). https://doi.org/10.3390/coatings8010030

    Article  CAS  Google Scholar 

  8. T. He, L. Xiang, S. Zhu, et al., CrystEngComm, No. 11, 1338 (2009). https://doi.org/10.1039/B900447P

  9. S. He and H. Lin, Nanoscale, No. 11, 10348 (2019). https://doi.org/10.1039/C9NR02148E

  10. L. Huang, Z. Yang, Y. He, et al., J. Hazardous Mater. 394 (122555) (2020). https://doi.org/10.1016/j.jhazmat.2020.122555

  11. L. Huo, F.-H. Liao, J.-R. Li, et al., Chem. Eng. Commun. 197, 684 (2010). https://doi.org/10.1080/00986440903287809

    Article  CAS  Google Scholar 

  12. W. Jiao, X. Wu, T. Xue, et al., Cryst. Growth Des 16, 5166 (2016). https://doi.org/10.1021/acs.cgd.6b00723

    Article  CAS  Google Scholar 

  13. J. T. Kloprogge, L. Hickey, and R. L. Frost, J. Solid State Chem. 177, 4047 (2004). https://doi.org/10.1016/j.jssc.2004.07.010

    Article  CAS  Google Scholar 

  14. L. Zhou, L. Yang, P. Yuan, et al., J. Phys. Chem. C 114, 21868 (2010). https://doi.org/10.1021/jp108778v

    Article  CAS  Google Scholar 

  15. Q. Wang, J. Sun, Q. Wang, et al., J. Mater. Chem. A 3 (9), 5083 (2015). https://doi.org/10.1039/c5ta00127g

    Article  CAS  Google Scholar 

  16. G. Li, L. Jiang, S. Pang, et al., J. Phys. Chem. B 110, 24472 (2006). https://doi.org/10.1021/jp064855v

    Article  CAS  PubMed  Google Scholar 

  17. Y. Li, Physica E 94, 22 (2017). https://doi.org/10.1016/j.physe.2017.07.010

    Article  CAS  Google Scholar 

  18. G. P. Panasyuk, I. V. Kozerozhets, E. A. Semenov, et al., Inorg. Mater. 55, 929 (2019). https://doi.org/10.1134/S0020168519090139

    Article  Google Scholar 

  19. G. P. Panasyuk, I. V. Kozerozhets, I. L. Voroshilov, et al., Russ. J. Phys. Chem. A 89, 592 (2015). https://doi.org/10.1134/S0036024415040196

    Article  CAS  Google Scholar 

  20. G. P. Panasyuk, V. N. Belan, I. L. Voroshilov, et al., Theor. Found. Chem. Eng. 47, 415 (2013). https://doi.org/10.1134/S0040579513040143

    Article  CAS  Google Scholar 

  21. G. P. Panasyuk, E. A. Semenov, I. V. Kozerozhets, et al., Dokl. Chem. 483, 272 (2018). https://doi.org/10.1134/S0012500818110022

    Article  CAS  Google Scholar 

  22. I. V. Kozerozhets, G. P. Panasyuk, E. A. Semenov, et al., Theor. Found. Chem. Eng. 45, 345 (2020). https://doi.org/10.1134/S0040579520030082

    Article  Google Scholar 

  23. G. P. Panasyuk, V. N. Belan, I. L. Voroshilov, et al., Inorg. Mater. 46, 747 (2010). https://doi.org/10.1134/S0020168510070113

    Article  CAS  Google Scholar 

  24. G. P. Panasyuk, I. V. Kozerozhets, E. A. Semenov, et al., Inorg. Mater. 55, 920 (2019). https://doi.org/10.1134/S0020168519090127

    Article  Google Scholar 

  25. A. H. Tavakoli, P. S. Maram, S. J. Widgeon, et al., J. Phys. Chem. C 117, 17123 (2013). https://doi.org/10.1021/jp405820g

    Article  CAS  Google Scholar 

  26. A. Navrotsky, Geochem. Trans, No. 4, 34 (2003). https://doi.org/10.1039/b308711e

  27. J. M. McHale, A. Auroux, A. J. Perrotta, et al., Science 277, 788 (1997). https://doi.org/10.1126/science.277.5327.788

    Article  CAS  Google Scholar 

  28. J. J. Calvin, P. F. Rosen, N. L. Ross, et al., J. Mater. Res., 416 (2019). https://doi.org/10.1557/jmr.2019.33

  29. R. H. R. Castro, S. V. Ushakov, L. Gengembre, et al., Chem. Mater. 18, 1867 (2006). https://doi.org/10.1021/cm052599d

    Article  CAS  Google Scholar 

  30. R. Mu, Z. J. Zhao, Z. Dohnalek, et al., Chem. Soc. Rev. 46, 1785 (2017). https://doi.org/10.1039/c6cs00864j

    Article  CAS  PubMed  Google Scholar 

  31. Z. Li, G. Liu, X. Li, et al., Cryst. Growth Des. 19, 1778 (2019).

    Article  CAS  Google Scholar 

  32. P. D. Santos, A. C. Coelho, H. Santos, et al., Mater. Res. Ibero Am. J. Mater. 12, 437 (2009).

    CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment to the Kurnakov Institute in the field of fundamental research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kozerozhets.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozerozhets, I.V., Panasyuk, G.P., Semenov, E.A. et al. Effect of Alkaline Medium on Hydrothermal Synthesis of Boehmite. Russ. J. Inorg. Chem. 66, 427–432 (2021). https://doi.org/10.1134/S0036023621030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621030104

Keywords:

Navigation