Skip to main content
Log in

Ground and Excited State Electronic Structures of d8-Squared Planar Platinum(II) and Gold(III) Complexes Bearing Cyclometallated 2,6-Diphenylpyridine and Pyrene-Derived N-Heterocyclic Carbene

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Electronic structures of four pyrene-derived N-heterocyclic carbene complexes of platinum(II) and gold(III) bearing cyclometallated 2,6-diphenylpyridine have been investigated theoretically. The structures of all complexes in gas phase have been first optimized. Different functionals and basis sets have been tested to find the best theoretical method. The results show that B3PW91 (LANL2DZ/6-31G*) combination give the best description of the molecules as compared with experimentally determined structural features. Using the calculation data from that best functional and mixed basis set combination, frontier molecular orbitals of the complexes have been examined. To gain understanding on the nature of electronic transitions in the UV-vis absorption spectra of the compounds, TD-DFT calculations have been carried out. A details analysis of the vertical excitation reveals that the nature of all the vertical electronic transitions in the complexes. Notably, the lowest energy transitions are πcb + dPt\(\pi _{{{\text{cb}}}}^{{\text{*}}}\) (for Pt1 and Pt2) and πCNCdAu + \(\pi _{{{\text{CNC}}}}^{{\text{*}}}\) (for Au1 and Au2) charge transfer in nature. A sharp contrast in lowest energy triplet excited state for d8‑squared planar Au1 and Pt1 has been demonstrated. While no contribution from gold(III) d orbital to the SOMO and SOMO – 1 orbital of Au1, there is significant contribution of platinum(II) dyz orbital in the SOMO – 1 orbital of Pt1, suggesting possible interaction of this singly occupied orbital with radical of π-symmetry substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. D. Bourissou, O. Guerret, F. P. Gabbaï, and G. Bertrand, Chem. Rev. 100, 39 (2000). https://doi.org/10.1021/cr940472u

    Article  CAS  PubMed  Google Scholar 

  2. N. Marion and S. P. Nolan, Acc. Chem. Res. 41, 1440 (2008). https://doi.org/10.1021/ar800020y

    Article  CAS  PubMed  Google Scholar 

  3. F. E. Hahn and M. C. Jahnke, Angew. Chem. Int. Ed. 47, 3122 (2008). https://doi.org/10.1002/anie.200703883

    Article  CAS  Google Scholar 

  4. M. N. Hopkinson, C. Richter, M. Schedler, and F. Glorius, Nature 510, 485 (2014). https://doi.org/10.1038/nature13384

    Article  CAS  PubMed  Google Scholar 

  5. W. A. Herrmann, Angew. Chem. Int. Ed. 41, 1290 (2002). https://doi.org/10.1002/1521-3773(20020415)41:8<1290::aid-anie1290>3.0.co;2-y

    Article  CAS  Google Scholar 

  6. S. Díez-González, N. Marion, and S. P. Nolan, Chem. Rev. 109, 3612 (2009). https://doi.org/10.1021/cr900074m

    Article  CAS  PubMed  Google Scholar 

  7. S. S. Shapovalov, O. G. Tikhonova, A. A. Pasynskii, et al., Russ. J. Coord. Chem. 44, 709 (2018). https://doi.org/10.1134/S1070328418120096

    Article  CAS  Google Scholar 

  8. L. Cavallo, A. Correa, C. Costabile, and H. Jacobsen, J. Organomet. Chem. 690, 5407 (2005). https://doi.org/10.1016/j.jorganchem.2005.07.012

    Article  CAS  Google Scholar 

  9. H. Clavier and S. P. Nolan, Chem. Comm. 46, 841 (2010). https://doi.org/10.1039/B922984A

    Article  CAS  PubMed  Google Scholar 

  10. K. Li, T. Zou, Y. Chen, et al., Chem. Eur. J. 21, 7441 (2015). https://doi.org/10.1002/chem.201406453

    Article  CAS  PubMed  Google Scholar 

  11. L. Oehninger, R. Rubbiani, and I. Ott, Dalton Trans. 42, 3269 (2013). https://doi.org/10.1039/C2DT32617E

    Article  CAS  PubMed  Google Scholar 

  12. W. Liu and R. Gust, Chem. Soc. Rev. 42, 755 (2013). https://doi.org/10.1039/C2CS35314H

    Article  CAS  PubMed  Google Scholar 

  13. Y. Liu, T. Harlang, S. E. Canton, et al. Chem Commun. 49, 6412 (2013). https://doi.org/10.1039/C3CC43833C

    Article  CAS  Google Scholar 

  14. T. S. Vishkaee, R. Fazaeli, and M. Yousefi, Russ. J. Inorg. Chem. 64, 237 (2019). https://doi.org/10.1134/S0036023619020062

    Article  CAS  Google Scholar 

  15. M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature 403, 750 (2000). https://doi.org/10.1038/35001541

    Article  CAS  PubMed  Google Scholar 

  16. M. S. Lowry and S. Bernhard, Chem. Eur. J. 12, 7970 (2006). https://doi.org/10.1002/chem.200600618

    Article  CAS  PubMed  Google Scholar 

  17. J. I. Goldsmith, W. R. Hudson, M. S. Lowry, et al., J. Am. Chem. Soc. 127, 7502 (2005). https://doi.org/10.1021/ja0427101

    Article  CAS  PubMed  Google Scholar 

  18. E. I. Mayo, K. Kilsa, T. Tirrell, et al., Photochem. Photobiol. Sci. 5, 871 (2006). https://doi.org/10.1039/b608430c

    Article  CAS  PubMed  Google Scholar 

  19. E. Baranoff, J. H. Yum, I. Jung, et al., Chem. Asian J. 5, 496 (2010). https://doi.org/10.1002/asia.200900429

    Article  CAS  PubMed  Google Scholar 

  20. D. Zhou, L. Lu, Y. Luo, et al., Russ. J. Coord. Chem. 44, 812 (2018). https://doi.org/10.1134/S1070328418120126

    Article  CAS  Google Scholar 

  21. X. P. Zhang, D. S. Zhang, W. Sun, and Z. F. Shi, Russ. J. Coord. Chem, 44, 15 (2018). https://doi.org/10.1134/S1070328418010098

    Article  CAS  Google Scholar 

  22. Yu. E. Begantsova, L. N. Bochkarev, E. V. Baranov, and V. A. Ilichev, Russ. J. Coord. Chem. 45, 856 (2019). https://doi.org/10.1134/S1070328419120029

    Article  CAS  Google Scholar 

  23. A. A. Bilyalova, S. V. Tatarin, P. Kalle, et al., Russ. J. Inorg. Chem. 64, 207 (2019). https://doi.org/10.1134/S0036023619020037

    Article  CAS  Google Scholar 

  24. W. Lu, B. X. Mi, M. C. W. Chan, et al., J. Am. Chem. Soc. 126, 4958 (2004). https://doi.org/10.1021/ja0317776

    Article  CAS  PubMed  Google Scholar 

  25. S. D. Cummings and R. Eisenberg, J. Am. Chem. Soc. 118, 1949 (1996). https://doi.org/10.1021/ja951345y

    Article  CAS  Google Scholar 

  26. K. Li, G. S. Ming Tong, Q. Wan, et al., Chem. Sci. 7, 1653 (2016). https://doi.org/10.1039/C5SC03766B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Gonell, M. Poyatos, and E. Peris, Dalton Trans. 45, 5549 (2016). https://doi.org/10.1039/C6DT00198J

    Article  CAS  PubMed  Google Scholar 

  28. A. D. Becke, Phys. Rev. A 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  29. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  30. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  31. J. P. Perdew, J. A. Chevary, S. H. Vosko, et al., Phys. Rev. B 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  CAS  Google Scholar 

  32. D. Andrae, U. Häußermann, M. Dolg, et al., Theor. Chim. Acta 77, 123 (1990). https://doi.org/10.1007/BF01112848

    Article  CAS  Google Scholar 

  33. P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, et al., J. Chem. Phys. 91, 1762 (1989). https://doi.org/10.1063/1.457082

    Article  CAS  Google Scholar 

  34. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985). https://doi.org/10.1063/1.448975

    Article  CAS  Google Scholar 

  35. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980). https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  36. V. K. M. Au, K. M. C. Wong, N. Zhu, and V. W. W. Yam, J. Am. Chem. Soc. 131, 9076 (2009). https://doi.org/10.1021/ja9027692

    Article  CAS  PubMed  Google Scholar 

  37. Ú. Belío, S. Fuertes, and A. Martín, Dalton Trans. 43, 10 828 (2014). https://doi.org/10.1039/C4DT00536H

    Article  Google Scholar 

Download references

Funding

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.03-2017.14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Ha.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen Van Ha, Doan Thanh Dat Ground and Excited State Electronic Structures of d8-Squared Planar Platinum(II) and Gold(III) Complexes Bearing Cyclometallated 2,6-Diphenylpyridine and Pyrene-Derived N-Heterocyclic Carbene. Russ. J. Inorg. Chem. 65, 1695–1702 (2020). https://doi.org/10.1134/S0036023620110145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620110145

Keywords:

Navigation