Skip to main content
Log in

Synthesis of ZnO Nanoparticles by Tartaric Acid Solution Combustion and Their Photocatalytic Properties

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

ZnO nanoparticles with different sizes were prepared by varying molar ratio of tartaric acid and zinc nitrate hexahydrate as fuel and oxidizer (F/O) at 0.00, 0.25, 0.50, and 1.00 (0.0000, 0.0025, 0.0050, and 0.0100 mol tartaric acid) by tartaric acid solution combustion method and followed by calcination at 600°C for 2 h. Effect of molar ratio of F/O on phase, morphology and photocatalytic activity of as-prepared ZnO samples were characterized by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In this research, all samples were composed of wurtzite hexagonal ZnO nanoparticles with different sizes controlled by the content of tartaric acid. The photocatalytic properties of samples were also investigated through photodegradation of methylene blue (MB) under UV light irradiation. ZnO nanoparticles for F/O ratio of 1.00 show the highest photodegradation of MB under UV light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. V. Vasei, S. M. Masoudpanah, M. Adeli, and M. R. Aboutalebi, Ceram. Int. 44, 7741 (2018). https://doi.org/10.1016/j.ceramint.2018.01.202

    Article  CAS  Google Scholar 

  2. A. Phuruangrat, S. Siri, P. Wadbua, et al., J. Phys. Chem. Solid. 126, 170 (2019). https://doi.org/10.1016/j.jpcs.2018.11.007

    Article  CAS  Google Scholar 

  3. A. Phuruangrat, S. Thongtem, and T. Thongtem, Mater. Des. 107, 250 (2016). https://doi.org/10.1016/j.matdes.2016.06.045

    Article  CAS  Google Scholar 

  4. E. P. Simonenko, N. P. Simonenko, I. A. Nagornov, et al., Russ. J. Inorg. Chem. 63, 1519 (2018). https://doi.org/10.1134/S0036023618110189

    Article  CAS  Google Scholar 

  5. R. D. Suryavanshi, S.V . Mohite, A. A. Bagade, et al., Mater. Res. Bull. 101, 324 (2018). https://doi.org/10.1016/j.materresbull.2018.01.042

    Article  CAS  Google Scholar 

  6. J. Ban, G. Xu, L. Zhang, et al., J. Solid State Chem. 256, 151 (2017). https://doi.org/10.1016/j.jssc.2017.09.002

    Article  CAS  Google Scholar 

  7. M. Y. N. Núñez and A. M. Cruz, Mater. Sci. Semicond. Process. 81, 94 (2018). https://doi.org/10.1016/j.mssp.2018.03.012

    Article  CAS  Google Scholar 

  8. Y. Mao, Y. Li, Y. Zou, et al., Ceram. Int. 45, 1724 (2019). https://doi.org/10.1016/j.ceramint.2018.10.054

    Article  CAS  Google Scholar 

  9. Y. Ko, Y. Kim, S.Y. Kong, et al., Sol. En. Mater. Sol. Cell. 183, 157 (2018). https://doi.org/10.1016/j.solmat.2018.04.021

    Article  CAS  Google Scholar 

  10. U. Manzoor, M. Islam, L. Tabassam, and S. U. Rahman, Physica E 41, 1669 (2009). https://doi.org/10.1016/j.physe.2009.05.016

    Article  CAS  Google Scholar 

  11. Z. K. Bolaghi, M. Hasheminiasari, and S. M. Masoudpanah, Ceram. Inter. 44, 12684 (2018). https://doi.org/10.1016/j.ceramint.2018.04.069

    Article  CAS  Google Scholar 

  12. S. T. Aruna and A. S. Mukasyan, Curr. Opin. Solid State Mater. Sci. 12, 44 (2008). https://doi.org/10.1016/j.cossms.2008.12.002

    Article  CAS  Google Scholar 

  13. N. Sheng, C. Han, C. Zhu, and T. Akiyama, Ceram. Int. 44, 18279 (2018). https://doi.org/10.1016/j.ceramint.2018.07.039

    Article  CAS  Google Scholar 

  14. N. Sheng, C. Han, Y. Lei, and C. Zhu, Electrochim. Acta 283, 1560 (2018). https://doi.org/10.1016/j.electacta.2018.07.120

    Article  CAS  Google Scholar 

  15. J. Zheng, W. Zhou, Y. Ma, et al., J. Alloy. Compds. 635, 207 (2015). https://doi.org/10.1016/j.jallcom.2015.02.114

    Article  CAS  Google Scholar 

  16. I. T. Papadas, A. Ioakeimidis, G. S. Armatas, and S. A. Choulis, Adv. Sci. 5, 1701029 (2018). https://doi.org/10.1002/advs.201701029

    Article  CAS  Google Scholar 

  17. S. Suwanboon, P. Amornpitoksuk, and C. Randorn, Ceram. Int. 45, 2111 (2019). https://doi.org/10.1016/j.ceramint.2018.10.116

    Article  CAS  Google Scholar 

  18. T. Thongtem, S. Kaowphong, and S. Thongtem, Ceram. Inter. 33, 1449 (2007). https://doi.org/10.1016/j.ceramint.2006.05.005

    Article  CAS  Google Scholar 

  19. M. H. Abdellah, S. A. Nosier, A. H. El-Shazly, and A. A. Mubarak, Alexandria Eng. J. 57, 3727 (2018). https://doi.org/10.1016/j.aej.2018.07.018

    Article  Google Scholar 

  20. R. Bhattacharjee, Y. S. Jain, and H. D. Bist, J. Raman Spectrosc. 20, 91 (1989). https://doi.org/10.1002/jrs.1250200206

    Article  CAS  Google Scholar 

  21. Powder Diffract. File (JCPDS-ICDD, PA 19073-3273, 2001).

  22. A. Phuruangrat, T. Thongtem, and S. Thongtem, J. Mol. Struct. 1161, 108 (2018). https://doi.org/10.1016/j.molstruc.2018.01.069

    Article  CAS  Google Scholar 

  23. A. Phuruangrat, S. Thongtem, and T. Thongtem, Mater. Lett. 196, 61 (2017). https://doi.org/10.1016/j.matlet.2017.03.013

    Article  CAS  Google Scholar 

  24. R. John and R. Rajakumari, Nano-Micro Lett. 4, 65 (2012). https://doi.org/10.3786/nml.v4i2.p65-72

    Article  CAS  Google Scholar 

  25. A. Klinbumrung, A. Phuruangrat, T. Thongtem, and S. Thongtem, Russ. J. Inorg. Chem. 63, 725 (2018). https://doi.org/10.1134/S0036023618060141

    Article  CAS  Google Scholar 

  26. A. Rahman and R. Jayaganthan, Russ. J. Inorg. Chem. 64, 946 (2019). https://doi.org/10.1134/S0036023619070131

    Article  CAS  Google Scholar 

  27. Z. A. Fattakhova, G. S. Zakharova, E. I. Andreikov, and I. S. Puzyrev, Russ. J. Inorg. Chem. 64, 857 (2019). https://doi.org/10.1134/S0036023619070076

    Article  CAS  Google Scholar 

  28. A. S. Morshedy, A. M. A. E. Nagger, S. M. Tawfik, et al., Egypt. J. Chem. 59, 609 (2016). https://doi.org/10.21608/EJCHEM.2016.2339

    Article  Google Scholar 

  29. P. Dash, A. Manna, N. C. Mishra, and S. Varma, Physica E 107, 38 (2019). https://doi.org/10.1016/j.physe.2018.11.007

    Article  CAS  Google Scholar 

  30. A. J. Reddy, M. K. Kokila, H. Nagabhushana, et al., Spectrochim. Acta A 81, 53 (2011). https://doi.org/10.1016/j.saa.2011.05.043

    Article  CAS  Google Scholar 

  31. O. Yayapao, T. Thongtem, A. Phuruangrat, and S. Thongtem, Mater. Sci. Semicond. Process. 39, 786 (2015). https://doi.org/10.1016/j.mssp.2015.06.039

    Article  CAS  Google Scholar 

  32. N. Chumha, S. Kittiwachana, T. Thongtem, et al., Ceram. Int. 40, 16337 (2014). https://doi.org/10.1016/j.ceramint.2014.07.072

    Article  CAS  Google Scholar 

  33. M. Biji, M. I. Irfana, S. Sreejamol, et al., Mater. Today Proceed. 9, 560 (2019). https://doi.org/10.1016/j.matpr.2018.10.376

    Article  CAS  Google Scholar 

  34. A. Zarkov, A. Stanulis, T. Salkus, et al., Ceram. Int. 42, 3972 (2016). https://doi.org/10.1016/j.ceramint.2015.11.066

    Article  CAS  Google Scholar 

  35. A.C. Lucilha, R. Afonso, P. R. C. Silva, et al., J. Braz. Chem. Soc. 25, 1091 (2014). https://doi.org/10.5935/0103-5053.20140085

    Article  CAS  Google Scholar 

  36. R. M. Mohamed, A. A. Ismail, M. W. Kadi, and D. W. Bahnemann, J. Photochem. Photobio. A 367, 66 (2018). https://doi.org/10.1016/j.jphotochem.2018.08.019

    Article  CAS  Google Scholar 

  37. M. Faisal, A. A. Ismail, F. A. Harraz, et al., J. Mol. Struct. 1173, 428 (2018). https://doi.org/10.1016/j.molstruc.2018.07.014

    Article  CAS  Google Scholar 

Download references

Funding

We wish to thank the Thailand’s Office of the Higher Education Commission for providing financial support through the Research Professional Development Project under the Science Achievement Scholarship of Thailand (SAST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anukorn Phuruangrat.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surisa Sa-nguanprang, Phuruangrat, A., Thongtem, T. et al. Synthesis of ZnO Nanoparticles by Tartaric Acid Solution Combustion and Their Photocatalytic Properties. Russ. J. Inorg. Chem. 65, 1102–1110 (2020). https://doi.org/10.1134/S0036023620070189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620070189

Keywords:

Navigation