Skip to main content
Log in

Kinetic and Methodological Problems of Direct Synthesis of ALON 9Al2O3 · 5AlN

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the direct interaction of oxide and aluminum nitride at temperatures of 1700 and 1780°C at a low pressure of p ≤ 1 Pa was studied. It was shown that the reaction without weight loss gives a two-phase nonequilibrium product ALON + AlN with the composition of ALON enriched with aluminum oxide. The reaction occurring under reducing conditions is accompanied by weight loss and gives an equilibrium two-phase product ALON + AlN, in which oxynitride spinel is enriched with aluminum nitride. The main methodological requirements for the direct synthesis of ALON with high optical and mechanical characteristics were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. Yamaguchi and H. Yanagida, J. Chem. Soc. Jpn. 32, 1264 (1959). https://doi.org/10.1246/bcsj.32.1264

    Article  CAS  Google Scholar 

  2. G. Long and L. M. Foster, J. Am. Ceram. Soc. 44, 255 (1961). https://doi.org/10.1111/j.1151-2916.1961.tb15373.x

    Article  CAS  Google Scholar 

  3. A. M. Lejus, Rev. Int. Hautes Temp. Refract. 1, 53 (1964).

    CAS  Google Scholar 

  4. J. W. McCauley and N. D. Corbin, J. Am. Ceram. Soc. 62, 476 (1979). https://doi.org/10.1111/j.1151-2916.1979.tb19109.x

    Article  CAS  Google Scholar 

  5. J. W. McCauley and N. D. Corbin, Progress in Nitrogen Ceramics. NATO ASI Series (Series E: Applied Sciences), Ed. by F. L. Riley (Springer, Dordrecht, 1983), Vol. 65, p. 111. https://doi.org/10.1007/978-94-009-68516_8

  6. T. Sakai, J. Ceram. Assoc. Jpn. 86 (991), 125 (1978). https://doi.org/10.2109/jcersj1950.86.991_125

    Article  CAS  Google Scholar 

  7. T. Sakai, J. Am. Ceram. Soc. 64, 135 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10243.x

    Article  CAS  Google Scholar 

  8. H. X. Willems, M. M. R. M. Hendrix, R. Metselaar, et al., J. Eur. Ceram. Soc. 10, 327 (1992). https://doi.org/10.1016/0955-2219(92)90088-U

    Article  CAS  Google Scholar 

  9. P. Tabary and C. Servant, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 22, 179 (1998). https://doi.org/10.1016/S0364-5916(98)00023-6

    Article  CAS  Google Scholar 

  10. P. Tabary and C. Servant, J. Appl. Crystallogr. 32, 241 (1999). https://doi.org/10.1107/S0021889898012497

    Article  CAS  Google Scholar 

  11. X. Wang, W. Li, and S. Seetharaman, Scand. J. Metall. 31, 1 (2002). https://doi.org/10.1034/j.1600-0692.2002.310101.x

    Article  Google Scholar 

  12. W. Nakao, H. Fukuyama, and K. Nagata, J. Electrochem. Soc. 150, J1 (2003). https://doi.org/10.1149/1.1537757

    Article  CAS  Google Scholar 

  13. J. W. McCauley, P. Parimal, M. Chen, et al., J. Eur. Ceram. Soc. 29, 223 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.03.046

    Article  CAS  Google Scholar 

  14. G. Ado, M. Billy, P. Guillo, and P. Lefort, Ind. Ceram. (Paris, Fr., 1946–1992) 792, 173 (1985).

  15. J. W. McCauley, J. Am. Ceram. Soc. 61, 372 (1978). https://doi.org/10.1111/j.1151-2916.1978.tb09336.x

    Article  CAS  Google Scholar 

  16. T. M. Hartnett, R. L. Gentilman, and E. A. Maguire, US Patent No. 4,481,300 (1984);

  17. R. L. Gentilman, E. A. Maguire, and L. E. Dolhert, US Patent No. 4,520,116 (1985);

  18. E. A. Maguire, T. M. Hartnett, and R. L. Gentilman, US Patent No. 4,686,070 (1987); R. L. Gentilman, E. A. Maguire, and L. E. Dolhert, US Patent No. 4,720,362 (1988).

  19. J. W. McCauley, K. M. Krishnan, R. S. Rai, et al., in Ceramic Microstructures’86, Vol. 21 of Materials Science Research, Ed. by J. A. Pask and A. G. Evans (Springer, Boston, MA, 1987). https://doi.org/10.1007/978-1-4613-1933-7_59

  20. N. D. Corbin, J. Eur. Ceram. Soc. 53, 143 (1989). https://doi.org/10.1016/0955-2219(89)90030-7

    Article  Google Scholar 

  21. J. W. McCauley, in Encyclopedia of Materials: Science and Technology, 2nd ed. (Elsevier, Amsterdam, 2001), p. 127.

    Google Scholar 

  22. R. M. Sullivan, in Proc. SPIE, Vol. 5786: Window and Dome Technologies and Materials IX (2005). https://doi.org/10.1117/12.598031

  23. H. Takebe, T. Kameda, M. Komatsu, et al., J. Ceram. Soc. Jpn. Inter. Edn. 97, 166 (1989). https://doi.org/10.2109/jcersj.97.166

    Article  CAS  Google Scholar 

  24. R. Collongues, J. C. Gilles, A. Lejus, et al., Mater. Res. Bull. 2, 837 (1967). https://doi.org/10.1016/0025-5408(67)90092-X

    Article  CAS  Google Scholar 

  25. C. F. Chen, E. Savrun, and A. F. Ramirez, in Ceramics Today—Tomorrow’s Ceramics: Proceedings of the 7th International Meeting on Modern Ceramics Technologies (7th CIMTEC—World Ceramics Congress), Montecatini Terme, Italy, 24–30 June 1990, Ed. by P. Vincenzini (Elsevier, 1991), pp. 1295–1390.

  26. N. D. Corbin and J. W. McCauley, in Proc. SPIE, Vol. 0297: Emerging Optical Materials (1982). https://doi.org/10.1117/12.932479

  27. W. Rafaniello and I. B. Cutler, Comm. Am. Ceram. Soc. 64, 128 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10232.x

    Article  Google Scholar 

  28. M. Ish-Shalom, J. Mater. Sci. Lett. 1, 147 (1982). https://doi.org/10.1007/BF00730944

    Article  CAS  Google Scholar 

  29. J. Zheng and B. Forslund, J. Eur. Ceram. Soc. 15, 1087 (1995). https://doi.org/10.1016/0955-2219(95)00078-9

    Article  CAS  Google Scholar 

  30. Y. Li, N. Li, and R. Yuan, J. Mater. Sci. 32, 979 (1997). https://doi.org/10.1023/A:1018518103842

    Article  CAS  Google Scholar 

  31. Y. Li, N. Li, and R. Yuan, J. Mater. Sci. Lett. 16, 185 (1997). https://doi.org/10.1023/A:1018574917741

    Article  Google Scholar 

  32. Y. Li, N. Li, and R. Yuan, J. Mater. Sci. 34, 2547 (1999). https://doi.org/10.1023/A:1004636312836

    Article  CAS  Google Scholar 

  33. S. Bandyopadhyay, G. Rixecker, F. Aldinger, et al., J. Am. Ceram. Soc. 85, 1010 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00212.x

    Article  CAS  Google Scholar 

  34. H. Gorter, L. J. M. G. Dortmans, and B. Bos, in The 27th International Cocoa Beach Conference on Advanced Ceramics and Composites: A: Ceramic Engineering and Science Proceedings (Wiley, New York, 2008), Vol. 24, No. 3, p. 433. https://doi.org/10.1002/9780470294802.ch62

  35. C. Balázsi, M. Furkó, F. Szira, and K. Balázsi, Acta Mater. Transylv. 2, 7 (2019). https://doi.org/10.33923/amt-2019-01-02

    Article  Google Scholar 

  36. Y. Shan, Z. Zhang, X. Sun, et al., J. Eur. Ceram. Soc. 36, 671 (2016). https://doi.org/10.1016/j.jeurcer-amsoc.2015.10.026

    Article  CAS  Google Scholar 

  37. N. Zhang, B. Liang, and X. Y. Wang, Sci. Engineer. A 528, 6259 (2011). https://doi.org/10.1016/j.msea.2011.04.072

    Article  CAS  Google Scholar 

  38. N. Jiang, Q. Liu, T. Xie, et al., J. Eur. Ceram. Soc. 37, 4213 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.028

    Article  CAS  Google Scholar 

  39. F. Chen, F. Zhang, J. Wang, et al., J. Alloys Compd. 659, 757 (2015). https://doi.org/10.1016/j.jallcom.2015.08.028

    Article  CAS  Google Scholar 

  40. F. C. Sahin, H. E. Kanbur, and B. Apak, J. Eur. Ceram. Soc. 32, 925 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.043

    Article  CAS  Google Scholar 

  41. X. Li, J. Huang, and J. Luo, Trans. Ind. Ceram. Soc. 76, 14 (2017). https://doi.org/10.1080/0371750X.2016.1257956

    Article  CAS  Google Scholar 

  42. D. L. Hildenbrand and W. F. Hall, J. Phys. Chem. 67, 888 (1963). https://doi.org/10.1021/j100798a041

    Article  Google Scholar 

  43. N. A. Gribchenkova, E. N. Beresnev, K. G. Smorchkov, et al., Russ. J. Inorg. Chem. 60, 1137 (2015). https://doi.org/10.1134/S0036023615090089

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported under a state assignment on basic scientific research for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Alikhanyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smorchkov, K.G., Gribchenkova, N.A. & Alikhanyan, A.S. Kinetic and Methodological Problems of Direct Synthesis of ALON 9Al2O3 · 5AlN. Russ. J. Inorg. Chem. 65, 668–673 (2020). https://doi.org/10.1134/S0036023620050228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050228

Keywords:

Navigation