Skip to main content
Log in

Thermodynamics and Magnetic Characteristics of Mixed Oxides on the Basis of Bismuth, Erbium, and Cobalt

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The standard formation enthalpy of the Bi12.5Er1.5CoO22.3 phase has been determined as following: ΔfH0(Bi12.5Er1.5CoO22.3, s, 298.15 K) = −5203.9 ± 14.5 kJ mol–1. Solution calorimetry, using 1 mol dm–3 HCl as a solvent, has been used to study the thermochemistry of Bi12.5Er1.5CoO22.3. The lattice energy for Bi12.5Er1.5CoO22.3 has been calculated on the basis of Born-Haber cycle using the standard formation enthalpy of the phase and literature data. For the first time, we measured the magnetic characteristics of Bi12.5Er1.5CoO22.3 and established that the Bi12.5Er1.5CoO22.3 phase has paramagnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. E. Crumpton, J. F. W. Mosselmans, C. Greaves, J. Mater. Chem. 15, 164 (2005). https://doi.org/10.1039/b412108m

    Article  CAS  Google Scholar 

  2. K. V. Mishchenko, Yu. M. Yukhin, I. A. Vorsina, Russ. J. Inorg. Chem. 57, 564 (2012). https://doi.org/10.1134/S0036023612040201

    Article  CAS  Google Scholar 

  3. L. A. Klinkina, V. I. Nikolaichik, N. V. Barkovskii, et al., Russ. J. Inorg. Chem. 51, 1122 (2006). https://doi.org/10.1134/S0036023606070175

    Article  Google Scholar 

  4. T. B. Tran, A. Navrotsky, Chem. Mater. 24, 4185 (2012). https://doi.org/10.1021/cm302446e

    Article  CAS  Google Scholar 

  5. Yu. V. Emel’yanova, A. A. Krylov, A. D. Kazantseva, et al., Russ. J. Inorg. Chem. 64, 151 (2019). https://doi.org/10.1134/S0036023619020050

    Article  Google Scholar 

  6. O. N. Krasnobaeva, I. P. Belomestnykh, T. A. Nosova, et al., Russ. J. Inorg. Chem. 63, 1419 (2018). https://doi.org/10.1134/S0036023618110098

    Article  CAS  Google Scholar 

  7. G. E. Nikiforova, A. V. Khoroshilov, K. S. Gavrichev, et al., Inorg. Mater. 55, 964 (2019). https://doi.org/10.1134/S0020168519090085

    Article  CAS  Google Scholar 

  8. E. S. Buyanova, Yu. V. Emel’yanova, M.V. Morozova, et al., Russ. J. Inorg. Chem. 63, 1297 (2018). https://doi.org/10.1134/S0036023618100042

    Article  CAS  Google Scholar 

  9. N. I. Matskevich, Th. Wolf, P. Adelmann, et al., J. Chem. Thermodyn. 116, 147 (2018). https://doi.org/10.1016/j.jct.2017.09.003

    Article  CAS  Google Scholar 

  10. A. Y. Chufarov, O. A. Lipina, L. L. Surat, et al., Cryst. Eng. Comm. 20, 2404 (2018). https://doi.org/10.1039/C8CE00005K

    Article  CAS  Google Scholar 

  11. N. I. Steblevskaya, M. V. Belobeletskaya, A. Yu. Ustinov, Russ. J. Inorg. Chem. 64, 179 (2019). https://doi.org/10.1134/S0036023619020219

    Article  CAS  Google Scholar 

  12. L. T. Denisova, L. A. Irtyugo, Yu. F. Kargin, et al., Russ. J. Inorg. Chem. 63, 361 (2018). https://doi.org/10.1134/S003602361803004X

    Article  CAS  Google Scholar 

  13. E. M. Dianov, J. Lightwave Technol. 31, 681. (2013).

    Article  Google Scholar 

  14. I. A. Bufetov, E. M. Dianov, Laser Physics Letters 6, 487 (2009). https://doi.org/10.1002/lapl.200910025

    Article  CAS  Google Scholar 

  15. J. C. Boivin, G. Mairesse, Chem. Mater. 10, 2870 (1998). https://doi.org/10.1021/cm980236q

    Article  CAS  Google Scholar 

  16. C. H. Hervoches, C. Greaves, Solid State Ionics 254, 1 (2014). https://doi.org/10.1016/j.ssi.2013.10.032

    Article  CAS  Google Scholar 

  17. A. Rubbens, M. Drache, P. Roussel, et al., Mater. Res. Bull. 42, 1683 (2007). https://doi.org/10.1016/j.materresbull.2006.11.036

    Article  CAS  Google Scholar 

  18. C. Pirovano, R. N. Vannier, G. Nowogrocki, et al., Solid State Ionics 159, 181 (2003). https://doi.org/10.1016/S0167-2738(03)00078-X

    Article  CAS  Google Scholar 

  19. R. Punn, A. M. Feteira, D. C. Sinclair, et al., J. Amer. Chem. Soc. 128, 15386 (2006). https://doi.org/10.1021/ja065961d

    Article  CAS  Google Scholar 

  20. C. H. Hervoches, C. Greaves, J. Mater. Chem. 20, 6759 (2010). https://doi.org/10.1039/c0jm01385d

    Article  CAS  Google Scholar 

  21. L. Glasser, J. Chem. Thermodyn. 78, 93 (2014). https://doi.org/10.1016/j.jct.2014.06.013

    Article  CAS  Google Scholar 

  22. D. Sedmidubsky, O. Benez, R. J. M. Koning, J. Chem. Thermodyn. 37, 1098 (2005). https://doi.org/10.1016/j.jct.2005.01.013

    Article  CAS  Google Scholar 

  23. C. Ma, Q. Ski, B. F. Woodfield, A. Navrotsky, J. Chem. Thermodyn. 60, 191 (2013). https://doi.org/10.1016/j.jct.2013.01.004

    Article  CAS  Google Scholar 

  24. P. G. Gagarin, A. V. Tyurin, K. S. Gavrichev, et al., Russ. J. Inorg. Chem. 63, 1478 (2018). https://doi.org/10.1134/S0036023618110050

    Article  CAS  Google Scholar 

  25. A. V. Tyurin, A. V. Khoroshilov, V. N. Gus’kov, et al., Russ. J. Inorg. Chem., 63, 1590 (2018). https://doi.org/10.1134/S0036023618120215

  26. P. G. Gagarin, A.V. Tyurin, V. N. Gus’kov, et al., Russ. J. Inorg. Chem. 63, 1478 (2018). https://doi.org/10.1134/S0036023618110050

  27. N. I. Matskevich, Th. Wolf, C. Greaves, et al., J. Chem. Thermodyn. 91, 234 (2015). https://doi.org/10.1016/j.jct.2015.07.036

    Article  CAS  Google Scholar 

  28. N. I. Matskevich, A. N. Bryzgalova, T. Wolf, et al., J. Chem. Thermodyn. 53, 23 (2012). https://doi.org/10.1016/j.jct.2012.04.003

    Article  CAS  Google Scholar 

  29. N. I. Matskevich, Th. Wolf, J. Chem. Thermodyn. 42, 225.8 (2010). https://doi.org/10.1016/j.jct.2009.08.006

  30. Thermal Constants of Substances: A Handbook, Ed. by V. P. Glushko (VINITI, Moscow, 1965–1982), Vols. 1–10 [in Russian].

  31. C. Gunter, R. Pfestorf, M. Rother et al., Therm. Anal. Calorim. 33, 359 (1988). https://doi.org/10.1007/BF01914624

    Article  Google Scholar 

  32. A. V. Dmitriev, E. V. Vladimirova, D. G. Kellerman et al., J. Alloys Comp. 743, 654 (2018). https://doi.org/10.1016/j.jallcom.2018.02.035

    Article  CAS  Google Scholar 

  33. L. R. Morss, Chem. Rev. 76, 827 (1976). https://doi.org/10.1021/cr60304a007

    Article  CAS  Google Scholar 

  34. J. Y. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford Univ. Press, 1932).

    Google Scholar 

  35. V. F. Fauth, E. Suard, V. Caignaert, Phys. Rev. B 65, 060401(R) (2001). https://doi.org/10.1103/PhysRevB.65.060401

  36. I. A. Nekrasov, S. V. Streltsov, M. A. Korotin et al., Phys. Rev. B 68, 235113 (2003). https://doi.org/10.1103/PhysRevB.68.235113

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Government Task for Nikolaev Institute of Inorganic Chemistry SB RAS and Novosibirsk State University. The magnetic measurements were supported by the program АААА-А19-119031890025-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Matskevich.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskevich, N.I., Kellerman, D.G., Gelfond, N.V. et al. Thermodynamics and Magnetic Characteristics of Mixed Oxides on the Basis of Bismuth, Erbium, and Cobalt. Russ. J. Inorg. Chem. 65, 720–724 (2020). https://doi.org/10.1134/S0036023620050150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050150

Keywords:

Navigation