Skip to main content
Log in

Low-Temperature Heat Capacity of M-Type Terbium Orthotantalate and Schottky Anomaly

  • THERMODYNAMICS OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The molar heat capacity of М-type terbium orthotantalate was measured by adiabatic calorimetry in the range 18–346 K. Smoothed heat capacity values were used to calculate the entropy, enthalpy gain, and reduced Gibbs free energy. The Schottky anomalous heat capacity in lanthanide compounds and its evaluation methods were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. A. Rozhdestvenskii, M. G. Zuev, and A. A. Fotiev, Tervalent Metal Tantalates (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  2. P. A. Arsen’ev, V. B. Glushkova, A. A. Evdokimov, et al., Rare-Earth Compounds. Zirconates, Hafnates, Niobates, Tantalates, and Antimonates (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  3. A. Dias, K. P. Siqueira, and R. L. Moreira, J. Alloys Compd. 693, 1243 (2017). https://doi.org/10.1016/j.jallcom.2016.10.077

    Article  CAS  Google Scholar 

  4. L. H. Brixner and H.-Y. Chen, J. Electrochem. Soc. 130, 2435 (1983). https://doi.org/10.1149/1.2119609

    Article  CAS  Google Scholar 

  5. T. Z. Forbes, M. Nyman, M. A. Rodriguez, and A. Navrotsky, J. Solid State Chem. 183, 2516 (2010). https://doi.org/101016/j.jssc.2010.08.024

    Article  CAS  Google Scholar 

  6. J. Wang, X. Y. Chong, R. Zhou, and J. Feng, Scr. Mater. 126, 24 (2017). https://doi.org/10.1016/j.scriptamat.2016.08.019

    Article  CAS  Google Scholar 

  7. J. S. Van Sluytman, K. Krämer, Tolpygo, et al., Acta Mater. 96, 133 (2015). https://doi.org/10.1016/j.actamat.2015.06.007

    Article  CAS  Google Scholar 

  8. D. L. Poerschke, R. W. Jackson, and C. G. Levi, Ann. Rev. Mater. Res. 47, 297 (2017). https://doi.org/10.1146/annurev-matsci-010917-105000

    Article  CAS  Google Scholar 

  9. E. F. J. Westrum, Therm. Anal. 30, 1209 (1985). https://doi.org/10.1007/bf01914288

    Article  CAS  Google Scholar 

  10. L. I. Kazakova, I. S. Bykov, and A. B. Dubovsky, J. Lumin. 7274, 211 (1997). https://doi.org/10.1016/s0022-2313(96)00268-2

  11. K. P. Siqueira, A. P. Carmo, M. J. V. Bell, and A. Dias, J. Lumin. 179, 146 (2016). https://doi.org/10.1016/j.jlumin.2016.06.054

    Article  CAS  Google Scholar 

  12. E. N. Iusupova, E. P. Savchenko, T. I. Panova, and E. K. Keller, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 555 (1980).

    Google Scholar 

  13. S. A. Mather and P. K. Davies, J. Am. Cheram. Soc. 78, 2737 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08049.x

    Article  CAS  Google Scholar 

  14. A. V. Tyurin, A. V. Khoroshilov, V. N. Guskov, et al., Russ. J. Inorg. Chem. 63, 1583 (2018). https://doi.org/10.1134/S0036023618120215

    Article  Google Scholar 

  15. M. A. Ryumin, E. G. Sazonov, V. N. Guskov, et al., Inorg. Mater. 52, 1149 (2016). https://doi.org/10.1134/S0020168516110145

    Article  CAS  Google Scholar 

  16. A. V. Khoroshilov, A. A. Ashmarin, V. N. Guskov, et al., Dokl. Phys. Chem. 484, 12 (2019). https://doi.org/10.1134/S0012501619010032

    Article  CAS  Google Scholar 

  17. V. S. Stubičan, J. Am. Ceram. Soc. 47, 55 (1954). https://doi.org/10.1111/j.1151-2916.1964.tb15654.x

    Article  Google Scholar 

  18. V. N. Guskov, E. G. Sazonov, A. V. Tyurin, et al., Russ. J. Inorg. Chem. 64, 1041 (2019). https://doi.org/10.1134/S0036023619080059

    Article  CAS  Google Scholar 

  19. G. E. Nikiforova, O. N. Kondrat’eva, A. V. Tyurin, et al., J. Alloys Compd. 803, 1016 (2019). https://doi.org/10.1016/j.jallcom.2019.06.354

    Article  CAS  Google Scholar 

  20. M. A. Ryumin, G. E. Nikiforova, A. V. Tyurin, et al., Inorg. Mater. 56, 97 (2020). https://doi.org/10.1134/S0020168520010148

  21. M. E. Wieser, N. Holden, T. B. Coplen, et al., Pure Appl. Chem. 85, 1047 (2013). https://doi.org/10.1351/PAC-REP-13-03-02

    Article  CAS  Google Scholar 

  22. Atomic weights and isotopic compositions with relative atomic masses (2015). www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses.

  23. K. S. Gavrichev, M. A. Ryumin, G. E. Nikiforova, et al., Russ. J. Gen. Chem. 87, 583 (2017). https://doi.org/10.1134/s1070363217030343

    Article  CAS  Google Scholar 

  24. M. A. Ryumin, E. G. Sazonov, V. N. Guskov, et al., Inorg. Mater. 53, 728 (2017). https://doi.org/10.1134/S0020168517070147

    Article  CAS  Google Scholar 

  25. J. D. Cashion, A. H. Cooke, M. J. M. Leask, et al., J. Mater. Sci. 3, 402 (2017). https://doi.org/10.1007/bf00550984

    Article  Google Scholar 

  26. B. Bleaney, J. Z. Pfeffer, and M. R. Wells, J. Phys.: Condens. Matter. 9, 7469 (1997). https://doi.org/10.1088/0953-8984/9/35/020

    Article  CAS  Google Scholar 

  27. H. Mensinger, J. Jakelski, H. G. Kahle, et al., J. Phys.: Condens. Matter 5, 935 (1993). https://doi.org/10.1088/0953-8984/5/7/021

  28. R. D. Chirico and E. F. Westrum, J. Chem. Thermodyn. 12, 71 (1975). https://doi.org/10.1016/0021-9614(80)90118-4

    Article  Google Scholar 

  29. R. D. Chirico and E. F. Westrum, J. Chem. Thermodyn. 12, 311 (1980). https://doi.org/10.1016/0021-9614(80)90143-3

    Article  CAS  Google Scholar 

  30. E. F. Westrum and N. Komada, Thermochim. Acta 109, 11 (1986). https://doi.org/10.1016/0040-6031(86)85004-3

    Article  CAS  Google Scholar 

  31. G. Nikiforova, A. Khoroshilov, A. Tyurin, et al., J. Chem. Thermodyn. 132, 44 (2019). https://doi.org/10.1016/j.jct.2018.12.041

    Article  CAS  Google Scholar 

  32. E. V. Kukueva, Candidate Dissertation in Chemistry (Moscow, 2019).

  33. O. N. Kondrat’eva, G. E. Nikiforova, A. V. Tyurin, et al., Alloys Compd. 779, 660 (2019). https://doi.org/10.1016/j.jallcom.2018.11.272

    Article  CAS  Google Scholar 

  34. R. D. Shannon, Acta Crystallogr., Sect. A: 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Shared Facilities Center of the Kurnakov Institute was used in the frame of the Governmental assignment to the Kurnakov Institute in the field of fundamental research.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-13-00025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Gus’kov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrichev, K.S., Tyurin, A.V., Gus’kov, V.N. et al. Low-Temperature Heat Capacity of M-Type Terbium Orthotantalate and Schottky Anomaly. Russ. J. Inorg. Chem. 65, 655–662 (2020). https://doi.org/10.1134/S0036023620050083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620050083

Keywords:

Navigation