Skip to main content
Log in

Microstructure and Electrical and Mechanical Properties of Lithium Tantalate Ceramics Synthesized by a Sol-Gel Method

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

LiTaO3 ceramics has been produced from a fine powder synthesized by a sol-gel method from a Li,Ta-containing citrate precursor, and its microstructure and mechanical and electrical properties have been studied. Young’s modulus and microhardness of the ceramic lithium tantalite have been determined. The critical stress intensity factor of mode I KIC, which is a criterion for the crack resistance of a material, has been evaluated, and the effective fracture energy of the LiTaO3 ceramics has been determined. The complex impedance dispersion Z*(ω) has been studied, and temperature dependences of dielectric constant and conductivity have been measured in the temperature range ~300–705 K, which is crucial for the acoustoelectronic applications of ceramic lithium tantalate. In the temperature range studied, the static conductivity and relaxation time of LiTaO3 ceramics have been determined. The charge transport activation enthalpies for various temperature ranges have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

    Google Scholar 

  2. C. F. Chen, A. Llobet, G. L. Brennecka, R. T. Forsyth, D. R. Guidry, and P. A. Papin, J. Am. Ceram. Soc. 95, 2820 (2012). https://doi.org/10.1111/j.1551-2916.2012.05267.x

    Article  CAS  Google Scholar 

  3. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, London, 1990).

    Google Scholar 

  4. D. Ming, J. M. Reau, J. Ravez, J. Gitae, and P. Hagenmuller, J. Solid State Chem. 116, 185 (1995). https://doi.org/10.1006/jssc.1995.1200

    Article  CAS  Google Scholar 

  5. T. Findakly, P. Suchoski, F. Leonberger, Opt. Lett. 13, 797 (1988).

    Article  CAS  Google Scholar 

  6. K. Lange, B. E. Rapp, and M. Rapp, Anal. Bioanal. Chem. 391, 1509 (2008). https://doi.org/10.1007/s00216-008-1911-5

    Article  CAS  PubMed  Google Scholar 

  7. A. V. Tyurin, A. V. Khoroshilov, V. N. Gus’kov, G. E. Nikiforova, L. K. Baldaev, and K. S. Gavrichev, Russ. J Inorg. Chem. 63, 1599 (2018). https://doi.org/10.1134/S0036023618120215

    Article  CAS  Google Scholar 

  8. H. Kato and A. Kudo, J. Phys. Chem. B 105, 4285 (2001). https://doi.org/10.1021/jp004386b

    Article  CAS  Google Scholar 

  9. F. F. Zheng, H. Liu, D. Liu, S. H. Yao, T. Yan, and J. Y. Wang, J. Alloys Compd. 477, 688 (2009). https://doi.org/10.1016/j.jallcom.2008.10.159

    Article  CAS  Google Scholar 

  10. S. Takasugi, K. Tomita, M. Iwaoka, H. Kato, and M. Kakihana, Int. J. Hydrogen Energy 40, 5638 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.121

    Article  CAS  Google Scholar 

  11. H. Muthurajan, H. H. Kumar, N. Nataraja., and V. Ravi, Ceram. Int. 34, 669 (2008). https://doi.org/10.1016/j.ceramint.2006.11.003

    Article  CAS  Google Scholar 

  12. S. C. Navale, V. Samuel, and V. Ravi, Bull. Mater. Sci. 28, 391 (2005). https://doi.org/10.1007/BF02711224

    Article  CAS  Google Scholar 

  13. S. C. Navale, A. B. Gaikwad, and V. Ravi, Mater. Lett. 60, 1047 (2006). https://doi.org/10.1016/j.matlet.2005.10.074

    Article  CAS  Google Scholar 

  14. Y. G. Liu, J. H. Hu, Z. H. Huang, and M. H. Fang, J. Sol–Gel Sci. Technol. 58, 664 (2011).https://doi.org/10.1007/s10971-011-2442-7

  15. J. Szanics, T. Okubo, and M. Kakihana, J. Alloys Compd. 281, 206 (1998). https://doi.org/10.1016/S0925-8388(98)00804-4

    Article  CAS  Google Scholar 

  16. B. Zielinґska, E. Mijowska, and R. J. Kalenczuk, Mater. Character. 68, 71 (2012). https://doi.org/10.1016/j.matchar.2012.03.008

    Article  CAS  Google Scholar 

  17. Tao Yang, Yan-gai Liu, Lei Zhang, Mei-ling Hu, Qian Yang, Zhao-hui Huang, Ming-hao Fang, Adv. Powder Technol. 25, (2014). https://doi.org/10.1016/j.apt.2014.01.011

  18. V. I. Ivanenko, E. P. Lokshin, O. G. Gromov, and V. T. Kalinnikov, Syntheses of Ferroelectric and Luminescent Complex Oxides of Rare Earths (Izd. KNTs RAN, Apatity, 2009) [in Russian].

  19. S. M. Masloboeva, G. N. Duboshin, and L. G. Harutyunyan, Vestn. MSTU 12, 279 (2009).

    Google Scholar 

  20. W. C. Oliver and G. M. Pharr, J. Mater. Res. 6, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  21. A. S. Useinov, Inst. Exp. Tech. 47, 119 (2004). https://doi.org/10.1023/B:INET.0000017264.83566.69

    Article  Google Scholar 

  22. Y.-T. Tsai and D. H. Whitmore, Solid State Ionics 7, 129 (1982). https://doi.org/10.1016/0167-2738(82)90006-6

    Article  CAS  Google Scholar 

  23. A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983), vol. 16.

    Google Scholar 

  24. J. Hladik, Physics of Electrolytes: Transport Processes in Solid Electrolytes and in Electrodes, (Academic Press, 1972; Mir, Moscow, 1978).

  25. I. A. Farbun, I. V. Romanova, T. E. Terikovskaya, D. I. Dzanashvili, and S. A. Kirillov, Zh. Prikl. Khim. 80, 1773 (2007).

    Google Scholar 

  26. K. V. Werde, D. Mondelaers, G. Vanhoyland, D. Nelis, M. K. Van Bael, and J. Mullens, J. Mater. Sci. 37, 81 (2002).

    Article  Google Scholar 

  27. Yu. Ya. Kharitonov, and Z. M. Alikhanova, Radiokhimiya 6, 702 (1964).

    CAS  Google Scholar 

  28. R. A. Nyquist, Infrared Spectra of Inorganic Compounds (Academic Press, New York; London, 1971).

    Book  Google Scholar 

  29. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

    Article  CAS  Google Scholar 

  30. V. V. Panasyuk, A. E. Andreikiv, S. E. Kovchik, Methods for Assessing Crack Resistance of Structural Materials (Naukova Dumka, Kiev, 1977) [in Russian].

    Google Scholar 

  31. M. N. Palatnikov, V. A. Sandler, A. V. Yatsenko, et al., Inorg. Mater. 51, 685 (2015). https://doi.org/10.1134/S0020168515070122

    Article  CAS  Google Scholar 

  32. A. Huanosta and A. R. West, J. Appl. Phys. 61, 5386 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Shcherbina.

Ethics declarations

The authors declare no conflict of interests.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palatnikov, M.N., Shcherbina, O.B., Masloboeva, S.M. et al. Microstructure and Electrical and Mechanical Properties of Lithium Tantalate Ceramics Synthesized by a Sol-Gel Method. Russ. J. Inorg. Chem. 65, 440–445 (2020). https://doi.org/10.1134/S0036023620030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620030109

Keywords:

Navigation