Skip to main content
Log in

Obtaining of NiO Nanosheets by a Combination of Sol–Gel Technology and Hydrothermal Treatment Using Nickel Acetylacetonate as a Precursor

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nickel oxide nanosheets were manufactured using sol–gel technology and hydrothermal treatment. The effect of hydrothermal treatment on the hierarchical organization character of the thus-manufactured oxide powder was shown. The microstructural parameters of the powder were studied by transmission (TEM) and scanning (SEM) electron microscopy; The homogeneity of the powder and the absence of impurities of another chemical composition were verified by energy dispersive elemental microanalysis (EDX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. K. Pachauri and Y. K. Chauhan, Renew. Sust. En. Rev. 43, 1301 (2015). https://doi.org/10.1016/j.rser.2014.11.098

    Article  Google Scholar 

  2. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Int. J. Hygrog. En. 44, 20 345 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.231

    Article  CAS  Google Scholar 

  3. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Ceram. Int. 44, 19 879 (2018). https://doi.org/10.1016/j.ceramint.2018.07.249

    Article  CAS  Google Scholar 

  4. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Glass Phys. Chem. 44, 314 (2018). https://doi.org/10.1134/S1087659618040144

    Article  CAS  Google Scholar 

  5. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008). https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  6. A. Burke, J. Power Sources 91, 37 (2000). https://doi.org/10.1016/S0378-7753(00)00485-7

    Article  CAS  Google Scholar 

  7. Y. Qi, Y. Liu, R. Zhu, et al., New J. Chem. (2019). https://doi.org/10.1039/C8NJ04959A

  8. Q. Chen, J. Li, C. Liao, et al., J. Mater. Chem. A 6, 19 488 (2018). https://doi.org/10.1039/C8TA07574C

    Article  Google Scholar 

  9. C. Ding, T. Zhu, J. S. Chen, et al., J. Mater. Chem. 21, 6602 (2011). https://doi.org/10.1039/c1jm00017a

    Article  CAS  Google Scholar 

  10. C.-Y. Cao, W. Guo, Z.-M. Cui, et al., J. Mater. Chem. 21, 3204 (2011). https://doi.org/10.1039/c0jm03749d

    Article  CAS  Google Scholar 

  11. S.-I. Kim, J.-S. Lee, H.-J. Ahn, et al., ACS Appl. Mater. Interfaces 5, 1596 (2013). https://doi.org/10.1021/am3021894

    Article  CAS  PubMed  Google Scholar 

  12. S. Vijayakumar, S. Nagamuthu, and G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188 (2013). https://doi.org/10.1021/am400012h

    Article  CAS  PubMed  Google Scholar 

  13. J. H. Liang and Y. D. Li, Chem. Lett. 32, 1126 (2003). https://doi.org/10.1246/CL.2003.1126

    Article  CAS  Google Scholar 

  14. S. K. Meher, P. Justin, and G. R. Rao, ACS Appl. Mater. Interfaces 3, 2063 (2011). dx.doi.org/https://doi.org/10.1021/am200294k

    Article  CAS  PubMed  Google Scholar 

  15. X. Feng, Y. Huang, C. Li, et al., Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.06.038

  16. X. Sun, J. Liu, and Y. Li, Chem.-Eur. J. 12, 2039 (2006). https://doi.org/10.1002/chem.200500660

    Article  CAS  PubMed  Google Scholar 

  17. J. W. Lang, L. B. Kong, W. J. Wu, et al., Chem. Commun., 4213 (2008). https://doi.org/10.1039/B800264A

  18. M. Kundu and L. Liu, Mater. Lett. 144, 114 (2015). https://doi.org/10.1016/j.matlet.2015.01.032

    Article  CAS  Google Scholar 

  19. T.-F. Yi, J. Mei, Y. Xie, and S. Luo, Electrochim. Acta 297, 593 (2019). https://doi.org/10.1016/j.electacta.2018.12.037

    Article  CAS  Google Scholar 

  20. T. Liu, L. Zhang, B. Cheng, et al., Chem. Commun. 54, 3731 (2018). https://doi.org/10.1039/c8cc00991k

    Article  CAS  Google Scholar 

  21. E. P. Simonenko, N. P. Simonenko, A. S. Mokrushin, et al., Russ. J. Inorg. Chem. 63, 851 (2018). https://doi.org/10.1134/S0036023618070197

    Article  CAS  Google Scholar 

  22. L. Wang, Y. Huang, X. Sun, et al., Nanoscale 6, 3157 (2014). https://doi.org/10.1039/c3nr05313j

    Article  CAS  PubMed  Google Scholar 

  23. I. E. Kononova, P. V. Kononov, and V. A. Moshnikov, Inorg. Mater. 54, 478 (2018). https://doi.org/10.1134/S0020168518050060

    Article  CAS  Google Scholar 

  24. E. P. Simonenko, N. P. Simonenko, F. Y. Gorobtsov, et al., Russ. J. Inorg. Chem. 63, 661 (2018). https://doi.org/10.1134/S0036023618060232

    Article  Google Scholar 

  25. F. Motahari, M. R. Mozdianfard, and M. Salavati-Niasari, Process Saf. Environ. 93, 282 (2015). https://doi.org/10.1016/j.psep.2014.06.006

    Article  CAS  Google Scholar 

  26. A. S. Adekunle, J. O. A. Oyekunle, O. S. Oluwafemi, et al., Int. J. Electrochem. Sci. 9, 3008 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

SEM measurements were performed using shared experimental facilities supported by IGIC RAS state assignment.

Funding

This study was supported by the Russian President’s scholarship for young scientists and postgraduate students (project no. SP-2407.2019.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Ivanova, V.M., Simonenko, N.P. et al. Obtaining of NiO Nanosheets by a Combination of Sol–Gel Technology and Hydrothermal Treatment Using Nickel Acetylacetonate as a Precursor. Russ. J. Inorg. Chem. 64, 1753–1757 (2019). https://doi.org/10.1134/S0036023619140080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619140080

Keywords:

Navigation