Skip to main content
Log in

Rhodium(II) Acetate Donor–Acceptor Complexes Rh2(OAc)4(Diox)2, Rh2(OAc)4(Dmso)2, and Rh2(OAc)4[(4-FC6H4)3Sb]2: Synthesis and Structure

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The rhodium diacetate complexes with dioxane Rh2(OAc)4(Diox)2 (I) and dimethyl sulfoxide Rh2(OAc)4(Dmso)2 (II) have been synthesized by dissolving rhodium diacetate [Rh2(OAc)4] in dioxane (Diox) and dimethyl sulfoxide (Dmso) with the further slow evaporation of the solvent. Rh2(OAc)4[(4-FC6H4)3Sb]2 (III) has been synthesized by the reaction between [Rh2(OAc)4] and tris-4-fluorophenylantimony in acetonitrile. Using X-ray diffraction, it has been established that the rhodium atoms in complexes IIII have a slightly distorted octahedral coordination: the angles ORhRh, ORhO, 176.56(6)°–177.72(4)° (I); SRhRh, ORhO, 174.79(9)°–179.271(13)° (II); SbRhRh, ORhO 173.590(19)°–175.48(10)° (III); bonds Rh–Rh, Rh–OAc, Rh–ODiox, 2.380(3), 2.037(3)–2.046(3), 2.335(3) Å (I); Rh–Rh, Rh–O, Rh–S, 2.4288(10), 2.034(3)–2.046(3), 2.7258(10) Å (II); Rh–Rh, Rh–O, Rh–Sb, 2.4183(12), 2.033(3)–2.044(3), 2.7113(13)–2.7120(13) Å (III). The structural organization in crystals of complexes IIII is caused by weak hydrogen bonds Н···ODiox (2.50–2.72 Å), Н···OAc (2.57 Å) (I), Н···ODmso 2.48–2.71 Å, Н···OAc 2.65, 2.66 Å (II) H···F (2.56–2.62 Å), and H···O (2.68–2.71 Å) (III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. D. Makitova, O. N. Krasochka, L. O. Atovmyan, et al., Koord. Khim. 13, 383 (1987).

    CAS  Google Scholar 

  2. J. Graf and W. Frank, Z. Anorg. Allg. Chem. 630, 1894 (2004). https://doi.org/10.1002/zaac.200400208

    Article  CAS  Google Scholar 

  3. V. I. Pekhnyo, S. I. Orysyk, V. V. Bon, et al., Pol. J. Chem. 80, 1767 (2006).

    CAS  Google Scholar 

  4. M. Bujak and W. Frank, Z. Kristallogr.—New Cryst. Struct. 229, 147 (2014). https://doi.org/10.1515/ncrs-2014-0083

    Article  CAS  Google Scholar 

  5. M. Bujak and W. Frank, Z. Naturforsch., B: Chem. Sci. 57, 1391 (2002).

    CAS  Google Scholar 

  6. M. Bujak, Cryst. Growth Des. 15, 1295 (2015). https://doi.org/10.1021/cg501694d

    Article  CAS  Google Scholar 

  7. E. Alessio, A. S. Santi, P. Faleschini, et al., J. Chem. Soc., Dalton Trans., 1849 (1994). https://doi.org/10.1039/DT9940001849

  8. A. Abbasi, S. Geranmayeh, M. Y. Skripkin, et al., Dalton Trans. 41, 850 (2012). https://doi.org/10.1039/C1DT11698C

    Article  CAS  PubMed  Google Scholar 

  9. V. V. Sharutin, O. K. Sharutina, V. S. Senchurin, and N. V. Somov, Russ. J. Coord. Chem. 40, 821 (2014). https://doi.org/10.1134/S1070328414110074

    Article  CAS  Google Scholar 

  10. V. V. Sharutin, O. K. Sharutina, and V. S. Senchurin, Russ. J. Gen. Chem. 86, 2141 (2 016). https://doi.org/10.1134/S1070363216090309

  11. Yu. S. Varshavskii, T. G. Cherkasova, V. N. Khrustalev, et al., Russ. J. Coord. Chem. 33, 194 (2007). https://doi.org/10.1134/S1070328407030074

    Article  CAS  Google Scholar 

  12. F. A. Cotton and D. A. Ucko, Inorg. Chim. Acta 6, 161 (1972). https://doi.org/10.1016/S0020-1693(00)91778-X

    Article  CAS  Google Scholar 

  13. G. W. Adamson, J. J. Daly, and D. Forster, J. Organomet. Chem. 71, C17 (1974). https://doi.org/10.1016/S0022-328X(00)93156-5

    Article  CAS  Google Scholar 

  14. D. H. Nguyen, N. Lassauque, L. Vendier, et al., Eur. J. Inorg. Chem., No. 2, 326 (2014). https://doi.org/10.1002/ejic.201300933

  15. P. Mura, J. Coord. Chem. 48, 503 (1999). https://doi.org/10.1080/00958979908023590

    Article  CAS  Google Scholar 

  16. L. Vigo, M. J. Poropudas, P. Salin, et al., J. Organomet. Chem. 694, 2053 (2009). https://doi.org/10.1016/j.jorganchem.2009.02.001

    Article  CAS  Google Scholar 

  17. S. E. Boyd, L. D. Field, and T. W. Hambley, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 50, 1019 (1994). https://doi.org/10.1107/S010827019201271X

    Article  Google Scholar 

  18. F. A. Cotton, B. G. DeBoer, M. D. LaPrade, et al., Acta Crystallogr., Sect. B: Struct. Sci. 27, 1664 (1971). https://doi.org/10.1107/S0567740871004527

    Article  CAS  Google Scholar 

  19. JuniorD. S. Martin, T. R. Webb, G. A. Robbins, et al., Inorg. Chem. 18, 475 (1979). https://doi.org/10.1021/ic50192a061

    Article  Google Scholar 

  20. M. Moszner, T. Glowiak, and J. J. Ziolkowski, Polyhedron 4, 1413 (1985). https://doi.org/10.1016/S0277-5387(00)86972-7

    Article  CAS  Google Scholar 

  21. V. Noinville, B. Viossat, and N.-H. Dung, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 49, 1297 (1993). https://doi.org/10.1107/S0108270193000022

    Article  Google Scholar 

  22. F. A. Cotton and T. R. Felthouse, Inorg. Chem. 19, 323 (1980). https://doi.org/10.1021/ic50204a010

    Article  CAS  Google Scholar 

  23. G. G. Christoph and Y.-B. Koh, J. Am. Chem. Soc. 101, 1422 (1979). https://doi.org/10.1021/ja00500a011

    Article  CAS  Google Scholar 

  24. R. J. H. Clark, A. J. Hempleman, H. M. Dawes, et al., J. Chem. Soc., Dalton Trans., I775 (1985). https://doi.org/10.1039/DT9850001775

  25. SMART and SAINT-Plus: Data Collection and Processing Software for the SMART System, Versions 5.0 (Bruker, Madison, WI, USA, 1998).

  26. SHELXTL/PC: An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Vers. 5.10 (Bruker, Madison, WI, USA, 1998).

  27. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  28. S. S. Batsanov, Russ. J. Inorg. Chem. 36, 3015 (1991).

    CAS  Google Scholar 

  29. Yu. A. Fialkov, Not Only in Water (Khimiya, Leningrad, 1989) [in Russian].

    Google Scholar 

  30. M. Mantina, A. C. Chamberlin, R. Valero, et al., J. Phys. Chem. A 113, 5806 (2009). https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The National South Ural State Research University is grateful to the Ministry of Education and Science of the Russian Federation for financial support (grant no. 4.6151.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharutin.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharutin, V.V., Sharutina, O.K. & Senchurin, V.S. Rhodium(II) Acetate Donor–Acceptor Complexes Rh2(OAc)4(Diox)2, Rh2(OAc)4(Dmso)2, and Rh2(OAc)4[(4-FC6H4)3Sb]2: Synthesis and Structure. Russ. J. Inorg. Chem. 64, 1025–1030 (2019). https://doi.org/10.1134/S0036023619080138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619080138

Keywords:

Navigation