Skip to main content
Log in

Investigation of the Ternary Reciprocal System Na,Ba||Br,MoO4

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Theoretical partition of the ternary reciprocal system Na,Ba||Br,MoO4 into simplexes was performed, the stable diagonal of the system was determined, and the heat of the reaction at the conversion point was calculated. The chemical interaction in the system and the phase equilibria were described, and the crystallization fields of phases were delimited. The validity of the theoretical partition was confirmed by experimental investigation of the stable diagonal and two stable elements of the ternary reciprocal system Na,Ba||Br,MoO4 by differential thermal analysis. It was found that the system Na,Ba||Br,MoO4 is a singular irreversible reciprocal system with eutectic melting. The system is divided by the stable cutting diagonal NaBr–BaMoO4 into two stable phase triangles, NaBr–BaBr2–Na2MoO4 and NaBr–BaMoO4–Na2MoO4. The results of the partition were corroborated by the X-ray powder diffraction analysis data. In the stable cutting diagonal, a saddle quasi-binary eutectic point, e 721°C, was revealed. The coordinates (melting point and composition) of two ternary eutectics, E1 586°C and E2 525°C, were found. The maximum crystallization field in the composition square corresponds to high-melting barium molybdate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. Ushak, A. G. Fernández, and M. Grageda, Adv. Therm. Energy Storage Syst., 49 (2015).

  2. Chemical Power Sources: A Handbook, Ed. by N. V. Korovin and A. M. Skundin (Mosk. Energ. Inst., Moscow, 2003) [in Russian].

    Google Scholar 

  3. A. Dinker, M. Agarwal, and G. D. Agarwal, J. Energy Inst. 90, 1 (2017). https://doi.org/10.1016/j.joei.2015.10.002

    Article  CAS  Google Scholar 

  4. Zh. A. Kochkarov and R. A. Zhizhuev, Russ. J. Inorg. Chem. 59, 387 (2014). https://doi.org/10.1134/S0036023614040093

    Article  CAS  Google Scholar 

  5. Zh. A. Kochkarov, Z. A. Sokurova, and A. R. Bitokova, Rasplavy, No. 2, 127 (2017).

    Google Scholar 

  6. Zh. A. Kochkarov, M. A. Khubaeva, I. A. Shogenov, et al., Russ. J. Inorg. Chem. 56, 282 (2011). https://doi.org/10.1134/S0036023611020124

    Article  CAS  Google Scholar 

  7. I. K. Garkushin, M. S. Ragrina, and M. A. Sukharenko, Russ. J. Inorg. Chem. 63, 98 (2018). https://doi.org/10.1134/S0036023618010084

    Article  CAS  Google Scholar 

  8. T. Mancini, Advantages of Using Molten Salt (Sandia National Laboratories, Albuquerque, NM, 2007). http://www.webcitation.org/60AE7heEZ

    Google Scholar 

  9. J. Uhlíř, J. Nucl. Mater. 360, 6 (2007).

    Article  CAS  Google Scholar 

  10. I. K. Garkushin, E. M. Dvoryanova, T. V. Gubanova, et al., Russ. J. Inorg. Chem. 60, 324 (2015). https://doi.org/10.1134/S0036023614120092

    Article  CAS  Google Scholar 

  11. I. K. Garkushin, G. E. Egortsev, and M. A. Istomova, Elektrokhim. Energ. 9, 95 (2009).

    CAS  Google Scholar 

  12. V. P. Bystrov and A. V. Livchak, Phase-Transition Heat-Storage Devices, in Issues of Heat and Power Resource Saving in Ventilation and Heat Supply Systems: Collected Scientific Works (TsNIIEPIO, Moscow, 1984) [in Russian].

  13. Zhihang Zhao, Mohammad T.Arif, Amanullah M.T.O., Energy Procedia 110, 243 (2017).

  14. B. Rapp, Mater. Today 8 (12), 6 (2015). https://doi.org/10.1016/S1369-7021(05)71195-0

    Article  Google Scholar 

  15. I. K. Garkushin, I. M. Kondratyuk, G. E. Egortsev, et al., Theoretical and Experimental Methods of Investigation of Multicomponent Systems (SamGTU, Samara, 2012) [in Russian].

  16. Thermal Constants of Substances: Handbook, Issue X, part 1: Tables of Accepted Values: Li, Na, Ed. by V. P. Glushko (VINITI, Moscow, 1981) [in Russian].

    Google Scholar 

  17. Thermal Constants of Substances: Handbook, Issue X, part 2: Tables of Accepted Values: K, Rb, Cs, Fr, Ed. by V. P. Glushko (VINITI, Moscow, 1981) [in Russian].

    Google Scholar 

  18. Thermal Constants of Substances: Database (Inst. Therm. Phys. Extreme States, Joint Inst. High Temp., Russ. Acad. Sci., Moscow, Russia; Chem. Fac., Lomonosov Moscow State Univ., Moscow, Russia) [in Russian]. http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html.

  19. E. G. Danilushkina, I. M. Kondratyuk, I. K. Garku-shin, et al., in Proceedings of the International Conference on Physicochemical Analysis of Liquid-Phase Systems (Sarat. Gos. Univ., Saratov, 2003) [in Russian].

  20. E. G. Danilushkina, E. M. Dvoryanova, I. M. Kondratyuk, and I. K. Garkushin, in Proceedings of the All-Russian Conference on Thermal Analysis (Samar. Gos. Arkhit.-Stroit. Akad., Samara, 2003), p. 51 [in Russian].

  21. N. K. Voskresenskaya, N. N. Evseeva, S. I. Berul’, and I. P. Vereshchetina, A Handbook of Melting of Anhydrous Inorganic Salt Systems (Akad. Nauk SSSR, Moscow, 1961), Vol. 1 [in Russian].

    Google Scholar 

  22. N. N. Verdiev, B. D. Babaev, and A. M. Gasanaliev, Russ. J. Inorg. Chem. 41, 296 (1996).

    Google Scholar 

  23. A. S. Kosmynin, Method of Thermal Analysis of Successive Projections of the Composition Polytope for Studying Heterogeneous Equilibria in Condensed Systems, Extended Abstract of Candidate’s Dissertation in Chemistry (Kuibyshev, 1977).

  24. W. W. Wendlandt, Thermal Methods of Analysis (Wiley, New York, 1974).

    Google Scholar 

  25. V. P. Egunov, Introduction to Thermal Analysis (SamVen, Samara, 1996) [in Russian].

    Google Scholar 

  26. A. G. Bergman and G. A. Bukhalova, Izv. Sekt. Fiz.-Khim. Anal. 21, 228 (1952).

    CAS  Google Scholar 

  27. T. G. Lupeiko, N. I. Tarasov, V. N. Zyablin, et al., in New Opportunities of Calculations of Thermodynamic Characteristics of Salt Systems Using Their Melting Diagrams (Moscow, 2012), p. 90 [in Russian].

    Google Scholar 

  28. N. A. Vasina, E. S. Gryzlova, and S. G. Shaposhnikova, Thermophysical Properties of Multicomponent Salt Systems (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  29. A. S. Kosmynin and A. S. Trunin, in Proceedings of the Samara Scientific School on Physicochemical Analysis of Multicomponent Systems (2006) [in Russian].

  30. A. S. Trunin, Integrated Methodology of Investigation of Multicomponent Systems (Samar. Gos. Tekh. Univ, Samara, 1997) [in Russian].

    Google Scholar 

Download references

Funding

This work was performed within the framework of the base part of the state assignment for the Samara State Technical University, Samara, Russia (project no. 4.5534.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Danilushkina.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilushkina, E.G., Garkushin, I.K. & Ryzhkova, D.S. Investigation of the Ternary Reciprocal System Na,Ba||Br,MoO4. Russ. J. Inorg. Chem. 64, 1047–1053 (2019). https://doi.org/10.1134/S0036023619080035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619080035

Keywords:

Navigation