Skip to main content
Log in

1,5-Bis[2-(Dioxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and Its Analogs: Acidity and Complexation in Aqueous Media Containing Copper(II) Cation

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Dissociation and complexation with Cu(II) cation is studied for phosphoryl-containing podands (tetrabasic 1,5-bis[2-(dioxyphosphoryl)-4-ethylphenoxy]acidic-type-3-oxapentane (H4LP) and dibasic 1,5-bis[2-(oxyethoxyphosphoryl)-4-ethylphenoxy]-pentane (H2LP)) and their carbonyl analog (polyether dibasic acid 1,5-bis[2-(oxycarbonylphenoxy)]oxapentane (H2LC) in water in the presence of 5% dimethylformamide potentiometrically, spectrophotometrically, and conductometrically. Phosphoryl podands exhibit good complexing properties and can selectively bind metal cations. The dissociation constants are determined and the distribution diagram of ionized species of the compounds under study depending on pH is plotted. The molar ratio between the metal and podand in all complexes is found to be 1 : 1. The stability constants of complexes with Cu2+ cation are calculated. The most stable copper(II) complexes are formed with the tetrabasic podand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wehbe, A. W. Y. Leung, M. J. Abrams, et al., Dalton Trans. 46, 10758 (2017). doi https://doi.org/10.1039/c7dt01955f

    Article  CAS  PubMed  Google Scholar 

  2. T. J. Wadas, E. H. Wong, G. R. Weisman, and C. J. Anderson, Chem. Rev. 110, 2858 (2010). doi https://doi.org/10.1021/cr900325h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C. S. Cutler, H. M. Hennkens, N. Sisay, et al., Chem. Rev. 113, 858 (2013). doi https://doi.org/10.1021/cr3003104

    Article  CAS  PubMed  Google Scholar 

  4. Adv. Drug. Delivery Rev. 60, 1347 (2008). doi https://doi.org/10.1016/j.addr.2008.04.006

  5. Mohd Zulkefeli, Asami Suzuki, Motoo Shiro, et al. Inorg. Chem. 50, 10113 (2011). doi https://doi.org/10.1021/ic201072q

    Article  CAS  PubMed  Google Scholar 

  6. E. Kimura, Bull. Jpn. Soc. Coord. Chem. 59, 26 (2012). doi https://doi.org/10.4019/bjscc.59.26

    Article  Google Scholar 

  7. T. Meierhofer, I. C. Rosnizeck, T. Graf, et al., J. Am. Chem. Soc. 133, 2048 (2011). doi https://doi.org/10.1021/ja108779j

    Article  CAS  PubMed  Google Scholar 

  8. V. C. Pierre, S. M. Harris, and S. L. Pailloux, Acc. Chem. Res. 51, 342 (2018). doi https://doi.org/10.1021/acs.accounts.7b00301

    Article  CAS  PubMed  Google Scholar 

  9. S. M. Harris, K. Srivastava, A. B. League, et al., Dalton Trans. 47, 2202 (2018). doi https://doi.org/10.1039/C7DT04203E

    Article  CAS  PubMed  Google Scholar 

  10. R. Puranik, S. Bao, A. M. Bonin, et al., Cell. Biosci. 6, 1 (2016). doi https://doi.org/10.1186/s13578-016-0076-8

    Article  CAS  Google Scholar 

  11. T. J. Hubin, N.-A. Prince, K. D. Roewe, et al., Bioorg. Med. Chem. 22, 3239 (2014). doi https://doi.org/10.1016/j.bmc.2014.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. E. C. Corbridge, Phosphorus: Chemistry, Biochemistry and Technology (CRC Press, New York, 2013).

    Google Scholar 

  13. C. Hill, A Series of Advances, Vol. 19: Ion Exchange and Solvent Extraction, Ed. by B. A. Moyer (CRC Press, Boca Raton, FL, 2010).

  14. K. L. Nash, R. E. Barrans, R. Chiarizia, et al., Solv. Extr. Ion Exch. 18, 605 (2000) https://doi.org/10.1080/07366290008934700.

    Article  CAS  Google Scholar 

  15. E. O. Otu and R. Chiarizia, Solv. Extr. Ion Exch. 19, 885 (2001).

    Article  CAS  Google Scholar 

  16. E. O. Otu and R. Chiarizia, Solv. Extr. Ion Exch. 19, 1017 (2001).

    Article  CAS  Google Scholar 

  17. S. Nishihama, R. P. Witty, L. R. Martin, and K. L. Nash, Solv. Extr. Ion Exch. 31, 370 (2013) https://doi.org/10.1080/07366299.2013.800404.

    Article  CAS  Google Scholar 

  18. P. R. Zalupski, D. R. McAlister, D. C. Stepinski, and A. W. Herlinger, Solv. Extr. Ion Exch. 21, 331 (2003).

    Article  CAS  Google Scholar 

  19. M. B. Ali, A. Ya, B. H. Ahmed, et al., Solv. Extr. Ion Exch. 30, 469 (2012).

    Article  CAS  Google Scholar 

  20. Q. Fu, L. Yang, and Q. Wang, Talanta 72, 1248 (2007). doi https://doi.org/10.1016/j.talanta.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  21. G. J. Lumetta, S. I. Sinkov, J. A. Krause, and L. E. Sweet, Inorg. Chem. 55, 1633 (2016). doi https://doi.org/10.1021/acs.inorgchem.5b02524

    Article  CAS  PubMed  Google Scholar 

  22. N. K. Batchu, T. V. Hoogerstraete, D. Banerjee, and K. Binnemans, RSC Adv. 72, 45351 (2017). doi https://doi.org/10.1039/C7RA09144C

    Article  Google Scholar 

  23. I. O. Shatrava, V. A. Ovchynnikov, K. E. Gubina, et al., Polyhedron 139, 98 (2018). doi https://doi.org/10.1016/j.poly.2017.09.038

    Article  CAS  Google Scholar 

  24. T. I. Ignat’eva, V. E. Baulin, E. N. Tsvetkov, and O. A. Raevskii, Zh. Obshch. Khim. 60, 1503 (1990).

    Google Scholar 

  25. A. M. Safiulina, A. G. Matveeva, D. V. Ivanets, et al., Izv. Akad. Nauk, Ser. Khim., No. 1, 161 (2015). doi https://doi.org/10.1007/s11172-015-0837-2

  26. A. M. Safiulina, A. G. Matveeva, D. V. Ivanets, et al., Izv. Akad. Nauk, Ser. Khim., No. 1, 169 (2015). doi https://doi.org/10.1007/s11172-015-0838-1

  27. A. N. Turanov, V. K. Karandashev, V. E. Baulin, and A. Yu. Tsivadze, Radiokhimiya 56, 22 (2014). doi https://doi.org/10.1134/S1066362214010056

    CAS  Google Scholar 

  28. V. E. Baulin, O. V. Kovalenko, A. N. Turanov, et al., Radiokhimiya, 57 (2015). doi https://doi.org/10.1134/S1066362215010099

  29. V. E. Baulin, O. V. Kovalenko, D. V. Baulin, et al., Fizikokhim. Poverkhn. Zashchita Mater. 52, 604 (2016). doi https://doi.org/10.1134/S2070205116060083

    Google Scholar 

  30. A. M. Safiullina, D. V. Ivanets, E. M. Kudryavtsev, et al., Russ. J. Inorg. Chem. 63, 1679 (2018). doi https://doi.org/10.1134/S00360236

    Article  Google Scholar 

  31. N. M. Dyatlova, V. Ya. Temkina, and I. D. Kolpakova, Comlexons (Khimiya, Moscow, 1970) [in Russian].

    Google Scholar 

  32. V. V. Belova, N. S. Egorova, A. A. Voshkin, et al., Theor. Found. Chem. Eng. 49, 545 (2015). doi https://doi.org/10.1134/S0040579515040041

    Article  CAS  Google Scholar 

  33. V. E. Baulin, M. A. Kiskin, and I. S. Ivanova, Russ. J. Inorg. Chem. 57, 671 (2012). doi https://doi.org/10.1134/S0036023612050038

    Article  CAS  Google Scholar 

  34. E. G. Polle, Russ. Chem. Rev. 43, 1337 (1974).

    Article  CAS  Google Scholar 

  35. L. I. Bulatov and I. P. Kalinkin, Manual for Photometric Analyses (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

Download references

Acknowledgments

This study was conducted under State Assignment 2018 (topic no. 0090-2017-0024) and supported in part by the Program no. 34 of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. F. Al Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Ansari, Y.F., Baulin, V.E. 1,5-Bis[2-(Dioxyphosphoryl)-4-ethylphenoxy]-3-oxapentane and Its Analogs: Acidity and Complexation in Aqueous Media Containing Copper(II) Cation. Russ. J. Inorg. Chem. 64, 550–555 (2019). https://doi.org/10.1134/S0036023619040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619040028

Keywords

Navigation