Skip to main content
Log in

Binuclear Mercury(I) Complex with D-Gluconic Acid

  • Coordination Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mercury(II) oxide has been reacted with D-gluconic acid (Gl) in an aqueous solution at a molar ratio of the reagents equal to 1: 2 to obtain mercury complex Hg2(C6H11O7)2 (I). The product isolated has been studied by elemental analysis, molar conductivity, IR, electronic, and NMR spectroscopy, and X-ray diffraction. The data obtained indicate that the compound contains the binuclear cation (Hg2)2+. It has been found that the complex has a chelate structure. Each mercury atom in I is connected with two oxygen atoms: one from the carbon atom of the carboxyl group and another from the hydroxyl group at the second carbon atom in the Gl molecule. Two gluconate ions in the complex have different configurations. Toxicity of I is ten times less than the toxicity of the starting mercury compound. Reacting Gl with the oxide of divalent mercury in an aqueous medium decreased he toxicity of the mercury compound due to its reduction to a formally monovalent state. The results can be useful for studying mercury detoxification and the application of Gl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dinc, M. Kara, M. Oqut, et al., Hacettepe J. Biol. Chem. 45, 603 (2017). doi https://doi.org/10.15671/HJBC.2018.203

    Article  Google Scholar 

  2. A. Pandey, S. Negi, and C. R. Soccol, Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products (Elsevier, 2016).

    Google Scholar 

  3. S. Ramachandran, P. Fontanille, A. Pandey, and C. Larroche, Food Technol. Biotechnol 44, 185 (2006). doi https://doi.org/10.1007/s12010-008-8209-0

    CAS  Google Scholar 

  4. Y. Wang, N. Nomura, M. Zeniya, et al., J. Med. Dent. Sci. 65, 35 (2018). doi https://doi.org/10.11480/jmds.650105

    Google Scholar 

  5. M. K. Trivedi, N. Dixit, P. Panda, et al., J. Pharm. Anal. 7, 332 (2017). doi https://doi.org/10.1016/j.jpha.2017.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  6. X. Chen, Z. Yang, and P. X. Metric, Am. J. Emerg. Med. 35, 1209e1 (2017). doi https://doi.org/10.1016/j.ajem.2017.04.006

    Article  Google Scholar 

  7. R. M. P. I. Rajakaruna, I. R. Ariyarathna, and D. N. Karunaratne, Ceylon J. Sci. 45, 3 (2016). doi https://doi.org/10.4038/cjs.v45i2.7384

    Article  Google Scholar 

  8. Lanzkowsky’s Manual of Pediatric Hematology and Oncology, Ed. by P. Lanzkowsky, J. Lipton, and J. Fish, (Elsevier, 2016).

    Google Scholar 

  9. H. Hemila and E. Chalker, Cochrane Database of Systematic Reviews, No. 9, CD012808 (2017). doi https://doi.org/10.1002/14651858.CD012808

    Google Scholar 

  10. M. M. Elseweidy, A.-M. A. Ali, N. Z. Elabidine, and M. Mursey, Biomed. Pharmacother. 95, 317 (2017). doi https://doi.org/10.1016/j.biopha.2017.08.081

    Article  CAS  PubMed  Google Scholar 

  11. Ya. A. Fialkov and N. G. Peryshkina, Zh. Neorg. Khim. 2, 749 (1957).

    CAS  Google Scholar 

  12. S. J. Angyal, Pure Appl. Chem. 35, 1351 (1973). doi https://doi.org/10.1351/pac197335020131

    Article  Google Scholar 

  13. J. F. Ashtan and W. F. Pickering, Aust. J. Chem. 23, 1071 (1976). doi https://doi.org/10.1071/CH9701367

    Google Scholar 

  14. M. A. Amin and M. S. Refat, Arabian J. Chem. 6, 165 (2013). doi https://doi.org/10.1016/j.arabjc.2010.09.030

    Article  CAS  Google Scholar 

  15. I. G. Konkina, S. P. Ivanov, Yu. I. Murinov, et al., Pharm. Chem. J. 36, 18 (2002). doi https://doi.org/10.1023/A:101579262

    Article  CAS  Google Scholar 

  16. I. G. Konkina, S. P. Ivanov, Yu. I. Murinov, et al., Russ. J. Inorg. Chem. 48, 880 (2003).

    Google Scholar 

  17. O. A. Knyazeva, S. I. Urazaeva, I. G. Konkina, et al., Kazan. Med. Zh. 99, 255 (2018). doi https://doi.org/10.17816/KMJ2018-255

    Article  Google Scholar 

  18. J. E. Gray, P. M. Theodorakos, D. L. Fey, and D. P. Krabbenhoft, Environ. Geochem. Health 37, 35 (2015). doi https://doi.org/10.1007/s10653-014-9628-1

    Article  CAS  PubMed  Google Scholar 

  19. S. Wang, T. Zhong, D. Chen, and X. Zhang, Sustainability, No. 8, 795 (2016). doi https://doi.org/10.3390/su8080795

    Google Scholar 

  20. L. V. Lukovnikova, G. I. Sidorin, L. A. Alikbaeva, and A. V. Galoshina, Toksikol. Vestn., No. 5, 2 (2017).

    Google Scholar 

  21. R. A. Kiper, Environmental Effects and Toxicology of Mercury. http://chemister.ru/Toxicology/ecologija-i-toxicologija-rtuti.htm

  22. G. Genchi, M. S. Sinicropi, A. Carocci, et al., Int. J. Environ. Res. Public Health 14, 74 (2017). doi https://doi.org/10.3390/ijerph14010074

    Article  CAS  PubMed Central  Google Scholar 

  23. A. G. Peregrina-Châvez, M.-del-R. Ramírez-Galindo, R. Chávez-Martínez, et al., Int. J. Environ. Res. Public Health 15, 657 (2018). doi https://doi.org/10.3390/ijerph15040657

    Article  CAS  PubMed Central  Google Scholar 

  24. L. E. Shinetova and S. A. Bekeeva, Vestn. Kazakhskogo Nat. Med. Univ., No. 1, 370 (2017).

    Google Scholar 

  25. S. A. Hassan and L. C. Abbott, J. Vet. Anat. 10 (1), 49 (2017).

    Article  Google Scholar 

  26. P. Morcillo, M. A. Esteban, and A. Cuesta, AIMS Environ. Sci. 4, 386 (2017). doi https://doi.org/10.3934/environ-sci.2017.3.386

    Article  CAS  Google Scholar 

  27. G. Bjørklund, J. Mutter, and J. Aaseth, Arch. Toxicol 91, 3787 (2017). doi https://doi.org/10.1007/s00204-017-2100-0

    Article  CAS  PubMed  Google Scholar 

  28. J. Aaseth, M. S. Skaug, Y. Cao, and O. Andersen, J. Trace Elem. Med. Biol. 31, 260 (2015). doi https://doi.org/10.1016/j.jtemb.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  29. Y. Cao, M. A. Skaug, O. Andersen, and J. Aaseth, J. Trace Elem. Med. Biol. 31, 188 (2015). doi https://doi.org/10.1016/j.jtemb.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  30. J. Aaseth, O. P. Ajsuvakova, A. V. Skalny, et al., Coord. Chem. Rev. 358, 1 (2018). doi https://doi.org/10.1016/j.ccr.2017.12.011

    Article  CAS  Google Scholar 

  31. H. A. Tajmir-Reahi, Can. J. Chem. 67, 651 (1989). doi https://doi.org/10.1139/v89-098

    Article  Google Scholar 

  32. G. M. Escandar, Salas Peregrin J.M., Sierra M.G. et al., Polyhedron 15, 2251 (1996). doi https://doi.org/10.1016/0277-5387(95)00478-5

    Article  CAS  Google Scholar 

  33. G. Svehla and C. L. Wilson, Comprehensive Analytical Chemistry, 6: Analytical Infrared Spectroscopy, Ed. by G. Svehla (Elsevier, 1976).

  34. I. G. Konkina, Z. A. Starikova, D. V. Lybeckyi, and Yu. I. Murinov, Russ. J. Phys. Chem. 79, 1987 (2005).

    CAS  Google Scholar 

  35. G. M. Sheldrick, SHELXTL 5.10 (Bruker, Madison. WI, USA, 1998).

    Google Scholar 

  36. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Interscience, New York, 1986).

    Google Scholar 

  37. L. A. Kazitsyna and N. B. Kupletskaya, Application of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry (Moscow Univ. Press, Moscow, 1979) [in Russian].

    Google Scholar 

  38. N. V. Somov, F. F. Chausov, R. M. Zakirova, et al., Russ. J. Coord. Chem. 44, (2018). doi https://doi.org/10.7868/SO132344X18010036

  39. Seo S. Sujin, H. Ju, and S. Kim, Inorg. Chem. 55, 11028 (2016). doi https://doi.org/10.1021/acs.inorgchem.6b01583

    Article  CAS  Google Scholar 

  40. J. Ha, X. Zhao, R. Yu, et al., Appl. Geochem. 78, 211 (2017). doi https://doi.org/10.1016/j.apgeochem.2016.12.017

    Article  CAS  Google Scholar 

  41. E. Berl’-Lunge, Chemicotechnical Characterization Methods (Khimteoret, Leningrad, 1941), Vol. 3 [in Russian].

  42. N. C. Panagiotopoulos and W. C. Hamilton, Acta Crystallogr., Sect. B 30, 1421 (1974). doi https://doi.org/10.1107/S0567740874005012

    Article  Google Scholar 

  43. Poisons and Antidotes. Dose of Poison. Toxicity Characteristics. http://www.kristallikov.net/page53.html.

  44. M. D. Mashkovskii, Medicines: A Manual for Physicians (Novaya Volna, Moscow, 2011).

    Google Scholar 

  45. Safety Data Sheet in accordance with Regulation (EU) no. 1907/2006. Mercury(II) Acetate. http://www.mer-ckrnillipore.com/…/web.

  46. Material Safety Data Sheet Mercuric oxide MSDS. http://www.sciencelab.com/msds.php?msdsId=9924619.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Konkina.

Additional information

Russian Text © I.G. Konkina, S.P. Ivanov, Yu.I. Murinov, 2019, published in Zhurnal Neorganicheskoi Khimii, 2019, Vol. 64, No. 2, pp. 165–171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konkina, I.G., Ivanov, S.P. & Murinov, Y.I. Binuclear Mercury(I) Complex with D-Gluconic Acid. Russ. J. Inorg. Chem. 64, 201–206 (2019). https://doi.org/10.1134/S0036023619020116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619020116

Keywords

Navigation