Skip to main content
Log in

Structure of the Nearest Environment of Ions in Aqueous Solutions of Aluminum Chloride According to X-ray Diffraction

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Aqueous solutions of aluminum chloride in a wide range of concentrations have been studied by X-ray diffraction under standard conditions. It has been demonstrated that aluminum speciation in highly concentrated solutions is dominated by ionic associates involving two chloride ions. As the concentration decreases, the associates first converts to ion pairs and then to independently hydrated ions. The coordination number of the Al3+ ion increases to 6 when the solution is diluted and with an increase in the Al3+–OH2 distance from 0.190 to 0.207 nm. The second coordination sphere of the cation is formed at an average distance of 0.400 nm. The number of solvent molecules in it naturally increases as the solution is diluted. The anion in highly concentrated solutions does not form its own coordination sphere. It begins to form at a distance of 0.315 nm only in solutions of average concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Gauthier, I. Fortier, F. Courchesne, P. Pepin, J. Mortimer, D. Gauvreau, Environ. Res 84, 234 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).

    Article  CAS  Google Scholar 

  3. F. Floris, M. Persico, A. Tani, and J. Tomasi, Chem. Phys. 195, 207 (1995).

    Article  CAS  Google Scholar 

  4. E. Wasserman, J. R. Rustad, and S. S. Xantheas, J. Chem. Phys. 106, 9769 (1997).

    Article  CAS  Google Scholar 

  5. A. Bakker, K. Hermansson, J. Lindgren, M. M. Probst, P. A. Bopp, Int. J. Quantum Chem. 75, 659 (1999).

    Article  CAS  Google Scholar 

  6. J. M. Martinez, R. R. Pappalardo, and E. S. Marcos, J. Am. Chem. Soc. 121, 3175 (1999).

    Article  CAS  Google Scholar 

  7. M. I. Lubin, E. J. Bylaska, and J. H. Weare, Chem. Phys. Lett. 322, 447 (2000).

    Article  CAS  Google Scholar 

  8. A. Lauenstein, K. Hermansson, J. Lindgren, M. Probst, P. A. Bopp, Int. J. Quantum Chem. 80, 892 (2000).

    Article  CAS  Google Scholar 

  9. T. Ikeda, M. Hirata, and T. Kimura, J. Chem. Phys. 119, 12386 (2003).

    Article  CAS  Google Scholar 

  10. D. Spangberg and K. Hermansson, J. Chem. Phys. 120, 4829 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. T. S. Hofer, B. R. Randolf, and B. M. Rode, Phys. Chem. Chem. Phys. 7, 1382 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. S. Amira, D. Spangberg, and K. Hermansson, J. Chem. Phys. 124, 104501 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. E. J. Bylaska, M. Valiev, J. R. Rustad, and J. H. Weare, J. Chem. Phys. 126, 104505 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. T. S. Hofer, B. R. Randolf, and B. M. Rode, J. Phys. Chem. B 112, 11726 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. T. M. Faro, G. P. Thim, and M. S. Skaf, J. Chem. Phys. 132, 114509 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. P. R. Smirnov and V. N. Trostin, Russ. J. Gen. Chem. 83, 15 (2013). doi 10.1134/S1070363213010039

    Article  CAS  Google Scholar 

  17. O. V. Grechin and P. R. Smirnov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 59 (6), 72 (2016).

    Article  CAS  Google Scholar 

  18. G. Johansson and M. Sandsrom, Chem. Scr. 4, 195 (1973).

    CAS  Google Scholar 

  19. R. Caminiti, G. Licheri, G. Piccaluga, et al., J. Chem. Phys. 71, 2473 (1979).

    Article  CAS  Google Scholar 

  20. M. Alves-Marques, M. A. Sousa-Oliveira, and J. Resina-Rodrigues, J. Chem. Soc., Faraday Trans. 86, 471 (1990).

    Article  CAS  Google Scholar 

  21. E. Cauët, S. A. Bogatko, E. J. Bylaska, and J. H. Weare, Inorg Chem. 51, 1021 (2012). doi 10.1021/ic301346k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Smirnov.

Additional information

Original Russian Text © P.R. Smirnov, O.V. Grechin, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 9, pp. 1232–1236.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, P.R., Grechin, O.V. Structure of the Nearest Environment of Ions in Aqueous Solutions of Aluminum Chloride According to X-ray Diffraction. Russ. J. Inorg. Chem. 63, 1251–1255 (2018). https://doi.org/10.1134/S0036023618090206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618090206

Navigation