Skip to main content
Log in

Study of the effect of methods for liquid-phase synthesis of nanopowders on the structure and physicochemical properties of ceramics in the CeO2–Y2O3 system

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two alternative chemical synthesis methods—cryotechnological coprecipitation of hydroxides and cocrystallization of salts—were used for preparing (CeO2)1–x (Y2O3) x nanopowders (x = 0.10, 0.15, 0.20) with a mean coherent scattering domain size of ~7–11 nm and S sp = 2.1–97.5 m2/g. From these nanopowders, ceramic nanomaterials with mean coherent scattering domain sizes of ~61–85 nm were synthesized. It was studied how the phase composition, microstructure, and electrical transport properties of the produced samples depend on the Y2O3 content of a CeO2-based solid solution and on the synthesis method. It was shown that, in the series (CeO2)1–x (Y2O3) x (x = 0.10, 0.15, 0.20), the solid solution (CeO2)0.90(Y2O3)0.10 has the highest ionic conductivity with the ion transport number t i = 0.73 (600°C). In its physicochemical characteristics, this ceramic can be used as a solid electrolyte of intermediate-temperature fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Bilonenko, Aviats. Kosm. Tekh. Tekhnol. 103, 83 (2013).

    Google Scholar 

  2. M. Kuhn and T. W. Napporn, Energies 3, 57 (2010).

    Article  CAS  Google Scholar 

  3. B. Huang, Q. Yutong, and M. Murshed, J. Proc. Control 21, 1426 (2011).

    Article  CAS  Google Scholar 

  4. A. S. Nesaraj, J. Sci. Ind. Res. 69, 169 (2010).

    CAS  Google Scholar 

  5. N. Mahato, A. Banerjee, A. Gupta, et al., Progr. Mat. Sci. 72, 141 (2015).

    Article  CAS  Google Scholar 

  6. A. A. Solov’ev, N. S. Sochugov, A. V. Shipilova, et al., Russ. J. Electrochem. 47, 494 (2011).

    Article  Google Scholar 

  7. R. K. Pachauri and Y. K. Chauhan, Renewable Sustainable Energy Rev. 43, 1301 (2015).

    Article  Google Scholar 

  8. J. Ma, T. S. Zhang, L. B. Kong, et al., J. Eur. Ceram. Soc. 24, 2641 (2004).

    Article  CAS  Google Scholar 

  9. V. S. Urusov, Theoretical Crystal Chemistry (MGU, Moscow, 1987).

    Google Scholar 

  10. A. K. Ivanov-Shits and I. V. Murin, Soild-State Ionics (SPbGU, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  11. V. V. Sal’nikov and E. Y. Pikalova, Phys. Solid State 57, 1944 (2015). doi 10.1134/S1063783415100261

    Article  Google Scholar 

  12. C. Tian and S.-W. Chan, Solid State Ionics 134, 89 (2000).

    Article  CAS  Google Scholar 

  13. E. Ballée, A. Ringuedé, and M. Cassir, Chem. Mater. 21, 4614 (2009).

    Article  Google Scholar 

  14. T. S. Zhang, J. Ma, L. B. Kong, et al., Solid State Ionics 170, 209 (2004).

    Article  CAS  Google Scholar 

  15. M. Fabián, B. Antic, and V. Girman, http://dx.doi.org/ doi 10.1016/j.jssc.2015.06.027

  16. Y. P. Fu, Ceram. Int. 35, 653 (2009).

    Article  CAS  Google Scholar 

  17. C. Wang, Y. Wang, and W. Huang, Ceram. Int. 38, 2087 (2012).

    Article  CAS  Google Scholar 

  18. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 57, 1521 (2012). doi 10.1134/S0036023612120194

    Article  CAS  Google Scholar 

  19. N. P. Simonenko, V. A. Nikolaev, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 929 (2016). doi 10.1134/S0036023616080167

    Article  CAS  Google Scholar 

  20. T. L. Egorova, M. V. Kalinina, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1061 (2016). doi 10.1134/S0036023616090047

    Article  CAS  Google Scholar 

  21. M. V. Kalinina, L. V. Morozova, T. L. Egorova, et al., Glass Phys. Chem. 42, 505 (2016). doi 10.1134/S1087659616050060

    Article  CAS  Google Scholar 

  22. T. Mori, J. Drennan, and Y. Wang, Sci. Technol. Adv. Mater. 4, 213 (2003).

    Article  CAS  Google Scholar 

  23. M. Yu. Arsent’ev, P. A. Tikhonov, M. V. Kalinina, et al., Glass Phys. Chem. 36, 478 (2010).

    Article  Google Scholar 

  24. G. D. Wignall and F. S. Bates, J. Appl. Crystallogr. 20, 28 (1986).

    Article  Google Scholar 

  25. U. Keiderling, Appl. Phys. A 74, 1455 (2002).

    Article  Google Scholar 

  26. P. Duran, M. Villegas, and F. Capel, J. Eur. Ceram. Soc. 16, 945 (1996).

    Article  CAS  Google Scholar 

  27. USSR State Standard (Izd-vo standartov, Moscow, 1981) [in Russian].

  28. M. Yu. Arsent’ev, Extended Abstract of Candidate’s Dissertation in Chemistry (St. Petersburg, 2011).

    Google Scholar 

  29. S. J. Gregg, and K. S. W. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  30. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Kluwer Academic Publishers, Dordrecht, 2012).

    Google Scholar 

  31. P. Debye and A. M. J. Bueche, J. Appl. Phys. 20, 518 (1949).

    Article  CAS  Google Scholar 

  32. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).

    Article  CAS  Google Scholar 

  33. A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (Wiley, New York, 1955), p. 17.

    Google Scholar 

  34. J. Teixera, On Growth and Form-Fractal and Non-Fractal Pattern in Physics, Ed. by H. E. Stanley and N. Ostrovsky (Martinus Nijhoff, Boston, 1986).

  35. W. Schmatz, T. Springer, J. Schelten, et al., J. Appl. Crystallogr. 7, 96 (1974).

    Article  CAS  Google Scholar 

  36. P. W. Schmidt, D. Avnir, D. Levy, et al., J. Chem. Phys. 94, 1474 (1991).

    Article  CAS  Google Scholar 

  37. P. Sarkar and P. S. Nicholson, Solid State Ionics 21, 49 (1986).

    Article  CAS  Google Scholar 

  38. K. P. Padmasree, R. A. Montalvo-Lozano, S. M. Montemayor, et al., J. Alloys Compd. 509, 8584 (2011).

    Article  CAS  Google Scholar 

  39. H. M. Yue, Z. L. Liu, Y. Wang, et al., Inorg. Mater. 39, 720 (2003).

    Article  CAS  Google Scholar 

  40. D. Z. De Florio and R. Muccillo, Solid State Ionics 123, 301 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.L. Egorova.

Additional information

Original Russian Text © T.L. Egorova, M.V. Kalinina, E.P. Simonenko, N.P. Simonenko, G.P. Kopitsa, O.V. Glumov, N.A. Mel’nikova, I.V. Murin, L. Almásy, O.A. Shilova, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 10, pp. 1283–1293.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, T., Kalinina, M., Simonenko, E. et al. Study of the effect of methods for liquid-phase synthesis of nanopowders on the structure and physicochemical properties of ceramics in the CeO2–Y2O3 system. Russ. J. Inorg. Chem. 62, 1275–1285 (2017). https://doi.org/10.1134/S0036023617100072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617100072

Navigation