Skip to main content
Log in

Effect of 3d-metal dopants on the electronic properties of hexagonal titanium dioxide nanotubes

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure of hexagonal TiO2 nanotubes doped with 3d transition metals from Sc to Zn was calculated by the linearized augmented cylindrical wave method. The calculated densities of states demonstrate that the substitution of Sc, V, Co, Cu, or Fe atoms for a part of Ti atoms leads to the decrease in the band gap width of the material from 4 to 2 eV. Such nanotubes are promising materials for creation of electrodes for electrochemical photolysis of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. A. Zaleska, Recent Pat. Eng. 2, 157 (2008).

    Article  CAS  Google Scholar 

  3. M. Anpo, Pure Appl. Chem. 72, 1787 (2000).

    CAS  Google Scholar 

  4. M. Pelaez, N. T. Nolan, and S. C. Pillai, Appl. Catal. B: Environ. 125, 331 (2012).

    Article  CAS  Google Scholar 

  5. T. Inoue, T. Okumura, and Y. Shimazu, J. Appl. Phys. 53, 6 (2014).

    Article  Google Scholar 

  6. T. Umebayashi, T. Yamaki, and H. Itoh, J. Phys. Chem. Solids 63, 1909 (2002).

    Article  CAS  Google Scholar 

  7. G. Shao, J. Phys. Chem. C 112, 18677 (2008).

    Article  CAS  Google Scholar 

  8. C. D. Valentin, G. Pacchioni, and H. Onishi, Chem. Phys. Lett. 469, 166 (2009).

    Article  Google Scholar 

  9. X. G. Hou, A. D. Liu, and M. D. Huang, Chin. Phys. Lett. 26, 077106 (2009).

    Article  Google Scholar 

  10. M. Guo and J. Du, Physica B 407, 1003 (2012).

    Article  CAS  Google Scholar 

  11. L. K. Zhang, B. Wu, and M. Wang, Adv. Mater. Res. 399, 1789 (2012).

    Google Scholar 

  12. Y. Wang, R. Zhang, and J. Li, Nanoscale Res. Lett. 9, 46 (2014).

    Article  Google Scholar 

  13. C. Li, Y. F. Zhao, and Y. Gong, Phys. Chem. Chem. Phys., 21446 (2014).

    Google Scholar 

  14. J. Yan, S. Feng, and H. Lu, Mater. Sci. Eng. B 172, 114 (2010).

    Article  CAS  Google Scholar 

  15. D. Eder, I. A. Kinloch, and A. H. Windle, Chem. Commun., 1448 (2006).

    Google Scholar 

  16. D. Eder, M. Motta, and A. H. Windle, Nanotecnology 20, 055602 (2009).

    Article  CAS  Google Scholar 

  17. Q. Meng, J. Wang, and Q. Xie, J. Phys. Chem. C 114, 9251 (2010).

    Article  CAS  Google Scholar 

  18. J.-C. Xu, M. Lu, and X.-Y. Guo, J. Mol. Catal. A: Chem. 226, 123 (2005).

    Article  CAS  Google Scholar 

  19. D. V. Bavykin, A. A. Lapkin, and P. K. Plucinski, Top. Catal. 39, 151 (2006).

    Article  CAS  Google Scholar 

  20. H. J. Liu, G. G. Liu, and G. H. Xie, Appl. Surf. Sci. 257, 3728 (2011).

    Article  CAS  Google Scholar 

  21. R. A. Evarestov, Y. F. Zhukovskii, A. V. Bandura, and S. Piskunov, J. Phys. Chem. C 114, 21061 (2010).

    Article  CAS  Google Scholar 

  22. R. A. Evarestov, Y. F. Zhukovskii, A. V. Bandura, et al., J. Phys. Chem. C 115, 14067 (2011).

    Article  CAS  Google Scholar 

  23. R. Evarestov, A. Bandura, M. Losev, et al., Physica E 43, 266 (2010).

    Article  CAS  Google Scholar 

  24. R. A. Evarestov, D. B. Migas, and Y. F. Zhukovskii, J. Phys. Chem. C 116, 13395 (2012).

    Article  CAS  Google Scholar 

  25. R. Evarestov and Y. Zhukovskii, Surf. Sci. 608, 226 (2013).

    Article  CAS  Google Scholar 

  26. O. Lisovski, S. Piskunov, Y. F. Zhukovskii, and J. Ozolins, IOP Conf. Ser.: Mater. Sci. Eng. 38, 012057 (2012).

    Article  Google Scholar 

  27. S. Piskunov, O. Lisovski, D. Bocharov, and Y. F. Zhukovskii, J. Phys. Chem. C 119, 18686 (2015).

    Article  CAS  Google Scholar 

  28. W. F. Huang, P. J. Wu, and W. C. Hsu, J. Theor. Comput. Chem. 12, 1350007 (2013).

    Article  Google Scholar 

  29. J. Yan, S. Feng, and H. Lu, Mater. Sci. Eng. B 172, 114 (2010).

    Article  CAS  Google Scholar 

  30. D. J. Mowbray, J. I. Martinez, and J. M. G. Lastra, J. Phys. Chem. C 113, 12301 (2009).

    Article  CAS  Google Scholar 

  31. A. Chesnokov, O. Lisovski, D. Bocharov, et al., Phys. Scr. 90, 094013 (2015).

    Article  Google Scholar 

  32. P. N. D’yachkov, O. M. Kepp, and A. V. Nikolaev, Dokl. Chem. 365, 67 (1999).

    Google Scholar 

  33. P. N. D’yachkov and D. V. Makaev, Phys. Rev. B 76, 195411 (2007).

    Article  Google Scholar 

  34. P. N. D’yachkov, D. Z. Kutlubaev, and D. V. Makaev, Phys. Rev. B 82, 035426 (2010).

    Article  Google Scholar 

  35. P. N. D’yachkov and D. V. Makaev, Int. J. Quant. Chem. 116, 316 (2016).

    Article  Google Scholar 

  36. P. N. D’yachkov, Int. J. Quant. Chem. 116, 174 (2016).

    Article  Google Scholar 

  37. P. N. D’yachkov, Electronic Properties and Application of Nanotubes (BINOM, Moscow, 2011) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. D’yachkov.

Additional information

Original Russian Text © E.P. D’yachkov, D.V. Makaev, L.O. Khoroshavin, P.N. D’yachkov, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 7, pp. 930–933.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachkov, E.P., Makaev, D.V., Khoroshavin, L.O. et al. Effect of 3d-metal dopants on the electronic properties of hexagonal titanium dioxide nanotubes. Russ. J. Inorg. Chem. 62, 931–934 (2017). https://doi.org/10.1134/S0036023617070051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617070051

Navigation