Skip to main content
Log in

Polyacrylonitrile-based FeCo/C nanocomposites: Preparation and magnetic properties

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Metal–carbon nanocomposites that represent FeCo alloy nanoparticles uniformly distributed over the carbon matrix, were prepared by the IR pyrolysis of precursors comprising polyacrylonitrile (PAN), iron acetylacetonate, and cobalt acetate (the metal ratio in the precursors was Fe: Co = 1: 1, 3: 1). The composition of FeCo alloy nanoparticles satisfies the tailored ratio Fe: Co. The FeCo phase is formed at synthesis temperatures in the range 500–600°С; at T ≤ 500°С only FCC-Co-base solid solutions are observed. The nanocomposites prepared at T ≥ 600°С simultaneously contain FeCo intermetallic nanoparticles and an insignificant amount of a FCC-Co phase or a cobalt-base solid solution phase. The saturation magnetization of FeCo/C metal–carbon nanocomposites is determined by the mean nanoparticle size and the alloy composition, and ranges from 36 to 64 (A m2)/kg (when Fe: Co = 1: 1) and from 35 to 52 (A m2)/kg (when Fe: Co = 3: 1) at synthesis temperatures in the range 600–800°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hisada, Y. Fujiwara, H. Sato, et al., J. Magn. Magn. Mater. 323, 3184 (2011).

    Article  CAS  Google Scholar 

  2. D. Hasegawa, H. Yang, T. Ogawa, and M. Takahashi, J. Magn. Magn. Mater. 321, 746 (2009).

    Article  CAS  Google Scholar 

  3. H. T. Yang, D. Hasegawa, M. Takahashi, and T. Ogawa, Appl. Phys. Lett. 94, 013103 (2009).

    Article  Google Scholar 

  4. J. Choi, J. H. Lee, T. H. Shin, et al., J. Am. Chem. Soc. 132, 11015 (2010).

    Article  CAS  Google Scholar 

  5. T. L. Kline, Y.-H. Xu, Y. Jing, and J. P. Wang, J. Magn. Magn. Mater. 321, 1525 (2009).

    Article  CAS  Google Scholar 

  6. S. F. Marenkin, V. M. Trukhan, I. V. Fedorchenko, et al., Russ. J. Inorg. Chem. 59, 355 (2014).

    Article  CAS  Google Scholar 

  7. Y. Yang, C. L. Xu, Y. X. Xia, et al., J. Alloys Compd. 493, 549 (2010).

    Article  CAS  Google Scholar 

  8. C. Wang, F. Y. Kang, J. L. Gu, et al., J. Magn. Magn. Mater. 321, 1924 (2009).

    Article  CAS  Google Scholar 

  9. P. Karipoth, A. Thirumurugan, and R. J. Joseyphus, J. Colloid Interf. Sci. 404, 49 (2013).

    Article  CAS  Google Scholar 

  10. S. Alikhanzadeh-Arani, M. Salavati-Niasari, and M. Almasi-Kashi, J. Magn. Magn. Mater. 324, 3652 (2009).

    Article  Google Scholar 

  11. P. L. Ong, S. Mahmood, T. Zhang, et al., Appl. Surf. Sci. 254, 1909 (2009).

    Article  Google Scholar 

  12. V. Tzitzios, G. Basina, D. Niarchos, et al., J. Appl. Phys. 109, 07A313 (2011).

    Google Scholar 

  13. K. Zábranský, B. David, N. Pizúrová, et al., AIP Conf. Proc. 1258, 102 (2010).

    Article  Google Scholar 

  14. K. Zábranský, O. Schneeweiss, J. Electr. Eng. 61, 299 (2010).

    Google Scholar 

  15. M. Abbas, Md. N. Islam, B. P. Rao, et al., Mater. Lett. 91, 326 (2013).

    Article  CAS  Google Scholar 

  16. Da Jeong Kim, Mou Pal, and Won Seok Seo, Micropor. Mesopor. Mater. 180, 32 (2013).

    Article  CAS  Google Scholar 

  17. M. H. Xu, W. Zhong, Z. H. Wang, et al., Physica E 52, 14 (2013).

    Article  CAS  Google Scholar 

  18. C. Wang, R. Lu, Zh. Huang, et al., J. Alloys Compd. 509, 494 (2011).

    Article  CAS  Google Scholar 

  19. S. N. Ivicheva, Yu. F. Kargin, A. A. Ashmarin, et al., Russ. J. Inorg. Chem. 57, 1419 (2012).

    Article  CAS  Google Scholar 

  20. L. M. Zemtsov, G. P. Karpacheva, M. N. Efimov, et al., Polymer Sci. A 48, 633 (2006).

    Google Scholar 

  21. G. P. Karpacheva, K. A. Bagdasarova, G. N. Bondarenko, et al., Polymer Sci. A 51, 1297 (2009).

    Google Scholar 

  22. E. L. Dzidziguri, D. G. Muratov, E. N. Sidorova, et al., Nanotech. Russ. 5, 665 (2010).

    Article  Google Scholar 

  23. D. G. Muratov, L. M. Zemtsov, G. P. Karpacheva, et al., Nanotech. Russ. 7, 62 (2012).

    Article  Google Scholar 

  24. L. V. Kozitov, A. V. Kostikova, V. V. Kozlov, and M. F. Bulatov, J. Nanoelectr. Optoelectr. X, 419 (2012).

    Article  Google Scholar 

  25. L. V. Kozhitov, D. G. Muratov, V. G. Kostishin, et al., J. Nano-Electron. Phys. 6, 03038 (2014).

    Google Scholar 

  26. V. V. Kozlov, G. P. Karpacheva, V. S. Petrov, and E. V. Lazovskaya, Polymer Sci. A 43, 20 (2001).

    CAS  Google Scholar 

  27. R. Ramamurti, V. Shanov, R. N. Singh, et al., J. Vacuum Sci. Technol. A: Vacuum, Surf., Films 24, 179 (2009).

    Article  Google Scholar 

  28. S. Majtejch and Y. Jin, Science 284, 470 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Muratov.

Additional information

Original Russian Text © D.G. Muratov, L.V. Kozhitov, A.V. Popkova, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 10, pp. 1365–1374.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratov, D.G., Kozhitov, L.V. & Popkova, A.V. Polyacrylonitrile-based FeCo/C nanocomposites: Preparation and magnetic properties. Russ. J. Inorg. Chem. 61, 1312–1320 (2016). https://doi.org/10.1134/S0036023616100168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616100168

Navigation