Skip to main content
Log in

Influence of the composition of [Ti(OC4H9)4 – x (O2C5H7) x ] complexes and hydrolysis conditions on the synthesis of titania by sol–gel technology

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The influence of the coordination sphere of [Ti(OC4H9)4–x (O2C5H7) x ] complexes, concentration in solution, and the ratio n(H2O)/n(Ti4+) on the hydrolysis and polycondensation kinetics of the complexes, the stability of the resulting gels, the thermal behavior of then-formed xerogels, the shift of anatase–rutile phase transition temperature, and the microstructure of the product, was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Macwan, P. N. Dave, and S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011).

    Article  CAS  Google Scholar 

  2. A. A. Haidry, P. Schlosser, P. Durina, et al., Cent. Eur. J. Phys. 9, 1351 (2011).

    CAS  Google Scholar 

  3. W. Yang, Y. Bai, Y. Li, et al., Anal. Bioanal. Chem. 382, 44 (2005).

    Article  CAS  Google Scholar 

  4. T. Zhang, B. Tian, J. Kong, et al., Anal. Chim. Acta 489, 199 (2003).

    Article  CAS  Google Scholar 

  5. H. Lu, J. Yang, J. F. Rusling, et al., Electroanalysis 18, 379 (2006).

    Article  CAS  Google Scholar 

  6. K. Pomoni, A. Vomvas, and Chr. Trapalis, Thin Solid Films 479, 160 (2005).

    Article  CAS  Google Scholar 

  7. R. Mechiakh, N. B. Sedrine, J. B. Naceur, et al., Surf. Coat. Technol. 206, 243 (2011).

    Article  CAS  Google Scholar 

  8. R. S. Sonawane, S. G. Hegde, and M. K. Dongare, Mater. Chem. Phys. 77, 744 (2002).

    Article  Google Scholar 

  9. M. Mehra and T. R. Sharma, Der Chem. Sin. 3, 486 (2012).

    CAS  Google Scholar 

  10. Z. Sun, D. H. Kim, M. Wolkenhauer, et al., Chem. Phys. Chem. 7, 370 (2006).

    CAS  Google Scholar 

  11. D. Kannaiyan, E. Kim, N. Won, et al., J. Mater. Chem. 20, 677 (2010).

    Article  CAS  Google Scholar 

  12. J. Gunlazuardi and W. A. Lindu, J. Photochem. Photobiol., A 173 (1), 51 (2005).

    Article  CAS  Google Scholar 

  13. D. Blanc, S. Pelissier, K. Saravanamuttu, et al., Adv. Mater. 11, 1508 (1999).

    Article  CAS  Google Scholar 

  14. M. Moonsiri, P. Rangsunvigit, S. Chavadej, et al., Chem. Eng. J. 97, 241 (2004).

    Article  CAS  Google Scholar 

  15. R. Zhu, C.-H. Chung, K. C. Cha, et al., ACS Nano 5, 9877 (2011).

    Article  CAS  Google Scholar 

  16. S. Mahanty, S. Roy, and S. Sen, J. Cryst. Growth 261, 77 (2004).

    Article  CAS  Google Scholar 

  17. T. Lopez, J. A. Moreno, R. Gomez, et al., J. Mater. Chem. 12, 714 (2002).

    Article  CAS  Google Scholar 

  18. T. A. Egerton, S. A. M. Kosa, and P. A. Christensen, Phys. Chem. Chem. Phys. 8, 398 (2006).

    Article  CAS  Google Scholar 

  19. R. Gómez, T. López, E. Ortiz-Islas, et al., J. Mol. Catal. A: Chem. 193, 217 (2003).

    Article  Google Scholar 

  20. A. A. Sadovnikov, A. E. Baranchikov, Y. V. Zubavichus, et al., J. Photochem. Photobiol., A 303–304, 36 (2015).

    Article  Google Scholar 

  21. L.-Y. Yu, H.-M. Shen, and Z.-L. Xu, J. Appl. Polym. Sci. 113, 1763 (2009).

    Article  CAS  Google Scholar 

  22. R. M. Almeida and E. E. Christensen, J. Sol-Gel Sci. Technol. 8, 409 (1997).

    CAS  Google Scholar 

  23. M. M. Viana, T. D. S. Mohallem, G. L. T. Nascimento, et al., Braz. J. Phys. 36, 1081 (2006).

    Article  CAS  Google Scholar 

  24. R. S. Sonawane and M. K. Dongare, J. Mol. Catal. A: Chem. 243, 68 (2006).

    Article  CAS  Google Scholar 

  25. V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 57, 307 (2012). doi 10.1134/S0036023612030278

    Article  Google Scholar 

  26. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 57, 1521 (2012). doi 10.1134/S0036023612120194

    Article  CAS  Google Scholar 

  27. E. P. Simonenko, A. V. Derbenev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 60, 1444 (2015). doi 10.1134/S0036023615120220

    Article  CAS  Google Scholar 

  28. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 60, 795 (2015). doi 10.1134/S0036023615070153

    Article  CAS  Google Scholar 

  29. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 667 (2016) doi 10.1134/S003602361606019X.

    Article  CAS  Google Scholar 

  30. N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, (2016). doi 10.1134/S0036023616070184

  31. N. P. Simonenko, E. P. Simonenko, V. G. Sevast’yanov, and N. T. Kuznetsov, Yad. Fiz. Inzh. 5, 331 (2014).

    Google Scholar 

  32. E. P. Simonenko, N. P. Simonenko, V. G. Sevast’yanov, et al., Kompozity Nanostrukt., No. 4, 52 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Simonenko.

Additional information

Original Russian Text © N.P. Simonenko, V.A. Nikolaev, E.P. Simonenko, V.G. Sevastyanov, N.T. Kuznetsov, 2016, published in Zhurnal Neorganicheskoi Khimii, 2016, Vol. 61, No. 8, pp. 975–986.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, N.P., Nikolaev, V.A., Simonenko, E.P. et al. Influence of the composition of [Ti(OC4H9)4 – x (O2C5H7) x ] complexes and hydrolysis conditions on the synthesis of titania by sol–gel technology. Russ. J. Inorg. Chem. 61, 929–939 (2016). https://doi.org/10.1134/S0036023616080167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616080167

Navigation