Skip to main content
Log in

Behavior of a sample of the ceramic material HfB2–SiC (45 vol %) in the flow of dissociated air and the analysis of the emission spectrum of the boundary layer above its surface

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ceramic HfB2–SiC samples with a silicon carbide content of 45 vol % have been obtained by spark-plasma sintering, their density and calculated porosity determined, and certain studies performed using IR spectroscopy, XRD, and other methods. The behavior of the HfB2–SiC (45 vol %) material has been studied using the VGU-4 high-frequency induction plasmatron with heating by a subsonic flow of dissociated air. It has been shown that the average temperature of the surface of the samples in the process of heating rises up to 2680–2690°C, which is connected with the formation on the surface, which has the temperature of ∼1700–1900°C, of local regions with the temperature of 2600–2700°C with gradually expanding areas. The total time during which the average surface temperature is higher than 2000°C is ∼30 min. The change in the composition of the gas phase above the sample surface in the course of the experiment was investigated using optical emission spectroscopy. Assumptions, which explain the changes in the concentration of boron and silicon under the action of a high-enthalpy flow, have been advanced. The elemental composition and the phase composition have been determined, and the microstructure of the surface and of various cuts of the samples have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al, Russ. J. Inorg. Chem. 58, 1669 (2013). doi: 10.1134/S0036023613140039

    CAS  Google Scholar 

  2. M. M. Opeka, I. G. Talmy, and J. A. Zaykoski, J. Mater. Sci. 39, 5887 (2004).

    Article  CAS  Google Scholar 

  3. F. Monteverde and R. Savino, J. Am. Ceram. Soc. 95, 2282 (2012).

    Article  CAS  Google Scholar 

  4. T. H. Squire and J. Marschall, J. Eur. Ceram. Soc. 30, 2239 (2010).

    Article  CAS  Google Scholar 

  5. W. G. Fahrenholtz and G. E. Hilmas, Int. Mater. Rev. 57, 61 (2012).

    Article  CAS  Google Scholar 

  6. V. G. Sevast’yanov, E. P. Simonenko and A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269 (2013). doi: 10.1134/S003602361311017X

    Article  Google Scholar 

  7. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1298 (2014). doi: 10.1134/S0036023614110217

    Article  CAS  Google Scholar 

  8. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem 59, 1361 (2014). doi: 10.1134/S0036023614120250

    Article  CAS  Google Scholar 

  9. E. Zapata-Solvas, D. D. Jayaseelan, P. M. Brown, et al., J. Eur. Ceram. Soc. 34, 3535 (2014).

    Article  CAS  Google Scholar 

  10. C. Carney, A. Paul, S. Venugopal, et al., J. Eur. Ceram. Soc. 34, 1045 (2014).

    Article  CAS  Google Scholar 

  11. J. Marschall, D. A. Pejakovic, W. G. Fahrenholtz, et al., J. Thermophys. Heat Transfer 26, 559 (2012).

    Article  CAS  Google Scholar 

  12. V. Zamora, M. Nygren, F. Guiberteau, et al., Ceram. Int. 40, 11457 (2014).

    Article  CAS  Google Scholar 

  13. M. Balat-Pichelin, E. Beche, D. Sciti, et al., Ceram. Int. 40, 9731 (2014).

    Article  CAS  Google Scholar 

  14. X. Jin, R. He, X. Zhang, et al., J. Alloys Compd. 566, 125 (2013).

    Article  CAS  Google Scholar 

  15. F. Monteverde, R. Savino, and M. Fumo, Corros. Sci. 53, 922 (2011).

    Article  CAS  Google Scholar 

  16. F. Monteverde, R. Savino, M. Fumo, et al., J. Eur. Ceram. Soc. 30, 2313 (2010).

    Article  CAS  Google Scholar 

  17. M. Gasch and S. Johnson, J. Eur. Ceram. Soc. 30, 2337 (2010).

    Article  CAS  Google Scholar 

  18. D. Sciti and L. Silvestroni, J. Eur. Ceram. Soc. 32, 1933 (2012).

    Article  CAS  Google Scholar 

  19. D. Sciti, R. Savino, and L. Silvestroni, J. Eur. Ceram. Soc. 32, 1837 (2012).

    Article  CAS  Google Scholar 

  20. J. Zou, G.-J. Zhang, C.-F. Hub, et al., J. Eur. Ceram. Soc. 32, 2519 (2012).

    Article  CAS  Google Scholar 

  21. L. Silvestroni and D. Sciti, J. Eur. Ceram. Soc. 33, 403 (2013).

    Article  CAS  Google Scholar 

  22. M. W. Bird, R. P. Aunea, F. Yu, et al., J. Eur. Ceram. Soc. 33, 2407 (2013).

    Article  CAS  Google Scholar 

  23. J. Zou, G.-J. Zhang, J. Vleugels, and O. Van der Biestba, J. Eur. Ceram. Soc. 33, 1609 (2013).

    Article  CAS  Google Scholar 

  24. S. Gangireddy, J. W. Halloran, and Z. N. Wing, J. Eur. Ceram. Soc. 33, 2901 (2013).

    Article  CAS  Google Scholar 

  25. W. Tan, C. A. Petorak, and R. W. Trice, J. Eur. Ceram. Soc. 34, 1 (2014).

    Article  Google Scholar 

  26. M. Tului, B. Giambi, S. Lionetti, et al., Surf. Coat. Technol. 207, 182 (2012).

    Article  CAS  Google Scholar 

  27. P. A. Williams, R. Sakidj, J. H. Perepezko, et al., J. Eur. Ceram. Soc. 32, 3875 (2012).

    Article  CAS  Google Scholar 

  28. C. Carney, A. Paul, S. Venugopal, et al., J. Eur. Ceram. Soc. 34, 1045 (2014).

    Article  CAS  Google Scholar 

  29. L. Silvestroni, L. Dalle Fabbriche, and D. Sciti, Mater. Des. 65, 1253 (2015).

    Article  CAS  Google Scholar 

  30. L. Silvestroni, D. Sciti, C. Melandri, and S. Guicciardi, Mater. Des. 65, 1264 (2015).

    Article  CAS  Google Scholar 

  31. X. B. Wang, D. C. Tian, and L. L. Wang, J. Phys.: Condens. Matter 6, 10185 (1994).

    CAS  Google Scholar 

  32. G. V. Samsonov, Handbook of Refractory Compounds (Metallurgizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  33. Emission Properties of Solids: A Handbook, Ed. by A. E. Sheindlin (Energiya, Moscow, 1974) [in Russian].

  34. G. V. Samsonov, A. S. Bolgar, E. A. Guseva, et al., High Temp. High Pressures 5, 29 (1973).

    CAS  Google Scholar 

  35. H. Wang, S.-H. Lee, and L. Feng, Ceram. Int. 40, 11009 (2014).

    Article  CAS  Google Scholar 

  36. C. Shirshendu, D. Debashish, and M. Azizur Rahaman, Metall. Mater. Trans. A 45, 6277 (2014).

    Article  Google Scholar 

  37. X. Zhang, R. Liu, X. Xiong, et al., Int. J. Refract. Met. Hard Mater. 48, 120 (2015).

    Article  CAS  Google Scholar 

  38. O. N. Grigoriev, B. A. Galanov, V. A. Kotenko, et al., J. Eur. Ceram. Soc. 30, 2173 (2010).

    Article  CAS  Google Scholar 

  39. J. Li, T. J. Lenosky, C. J. Foörst, et al., J. Am. Ceram. Soc. 91, 1475 (2008).

    Article  CAS  Google Scholar 

  40. T. A. Parthasarathy, R. A. Rapp, M. Opeka, et al., J. Am. Ceram. Soc. 95, 338 (2012).

    Article  CAS  Google Scholar 

  41. W. G. Fahrenholtz, J. Am. Ceram. Soc. 90, 143 (2007).

    Article  CAS  Google Scholar 

  42. M. Playez, D. G. Fletcher, J. Marschall, et al., J. Thermophys. Heat Transfer 23, 279 (2009).

    Article  CAS  Google Scholar 

  43. A. N. Gordeev and A. F. Kolesnikov, Topical Problems of Mechanics: Physicochemical Mechanics of Liquids and Gases (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  44. A. N. Gordeev and M. I. Yakushin, SAMPE J. 29 (2), 27 (1993).

    CAS  Google Scholar 

  45. A. N. Gordeev, V. N. Prilepskii, and M. I. Yakushin, in Gagarin Scientific Symposium on Cosmonautics and Aviation–1986 (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  46. A. N. Gordeev, M. I. Yakushin, and N. G. Bykova, 3rd Eur. Workshop on Thermal Protection Systems, ESTEC, 25–27 March, 1998, Netherlands, Noordwijk, p. 329.

    Google Scholar 

  47. D. E. Wiley, W. R. Manning, and O. Hunter, J. LessCommon Met. 18, 149 (1969).

    Article  CAS  Google Scholar 

  48. T. Kawamura, Mineral. J. (Japan) 4, 333 (1965).

    Article  CAS  Google Scholar 

  49. A. N. Zaidel’, V. K. Prokof’ev, S. M. Raiskii, V. A. Slavnyi, and E. A. Shreider, Tables of Spectral Lines (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  50. A. N. Zaidel’, V. K. Prokof’ev, S. M. Raiskii, V. A. Slavnyi, and E. A. Shreider, Zaidel Tables Program Package www.slavna.ru.

  51. G. S. Chaubey, Y. Yao, J. P. A. Makongo, et al., RSC Adv. 2, 9207 (2012).

    Article  CAS  Google Scholar 

  52. M. Ferrier, J.-P. Bonnet, J. Claus, et al., Proceedings of the International Youth Nuclear Congress, Stockholm (Sweden), Olkiluoto (Finland), 2006, paper No. 490.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Sevastyanov.

Additional information

Original Russian Text © V.G. Sevastyanov, E.P. Simonenko, A.N. Gordeev, N.P. Simonenko, A.F. Kolesnikov, E.K. Papynov, O.O. Shichalin, V.A. Avramenko, N.T. Kuznetsov, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 11, pp. 1485–1499.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevastyanov, V.G., Simonenko, E.P., Gordeev, A.N. et al. Behavior of a sample of the ceramic material HfB2–SiC (45 vol %) in the flow of dissociated air and the analysis of the emission spectrum of the boundary layer above its surface. Russ. J. Inorg. Chem. 60, 1360–1373 (2015). https://doi.org/10.1134/S0036023615110133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023615110133

Keywords

Navigation