Skip to main content
Log in

Synthesis of different bismuth titanates and ordered Bi-Ti-O nanocomposites based on opal matrices

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bismuth titanates of different composition and 3D nanocomposites based on opal matrices and bismuth titanates of different structure types have been synthesized by sol–gel and alkoxide methods with the use of polyhydric alcohols. The suggested procedure for synthesis of bismuth titanates Bi12TiO20 with a sillenite structure and Bi2Ti2O7 with a pyrochlore structure and layered titanates Bi4Ti3O12 makes it possible to decrease the temperature of the onset of formation of a target product in powders and a 3D nanocomposite based on opal matrices and to reduce the synthesis time. It has been revealed that the aging of the initial sol has an effect on the phase composition of bismuth titanates. It has been found that formation of the bismuth dititanate phase with a pyrochlore structure in the pores of opal matrices (nanoreactors) becomes dominating whatever the Bi2O3/TiO2 ratio is (2 : 3 or 1 : 2), which is associated with the effect of the size factor on the stability of the forming phases. It has been shown that the existence range of metastable Bi2Ti2O7 and Bi2SiO5 forming as nanoparticles can be extended from 20 to 1000°C through confinement of the reaction zone of the sol–gel synthesis in the pores of the opal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Nesterov and A. A. Panich, Modern Problems of Materials Science of Ceramic Piezoelectric Materials (Izd. YuFU, Rostov-on-Don, 2010) [in Russian].

    Google Scholar 

  2. Yu. F. Kargin, V. I. Burkov, A. A. Mar’in, and A. V. Egorysheva, Crystals of Bi12MxO20 ± d with a Sillenite Structure: Synthesis, Structure, Properties (IONKh RAN, “Azbuka,” Moscow, 2004) [in Russian].

    Google Scholar 

  3. E. I. Speranskaya, I. S. Rez, L. V. Kozlova, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 1, 232 (1965).

    CAS  Google Scholar 

  4. Y. Masuda, H. Masumoto, A. Baba, et al., Jpn. J. Appl. Phys. 131 (9B), 3108 (1992).

    Article  Google Scholar 

  5. J. R. Esquivel-Elizondo, B. B. Hinojosa, and J. C. Nino, Chem. Mater. 23, 4965 (2011).

    Article  CAS  Google Scholar 

  6. B. Aurivillius, Arkiv Kemi 1 (58), 499 (1949).

    CAS  Google Scholar 

  7. V. Kahlenberg and H. Böhm, Acta Crystallogr., Sect. B 51, 11 (1995).

    Article  Google Scholar 

  8. D. D. Hogarth, Am. Mineral. 62, 403 (1977).

    CAS  Google Scholar 

  9. T. M. Brutton, J. Solid State Chem. 9, 173 (1974).

    Article  Google Scholar 

  10. S. R. Dhage, Y. B. Khollam, S. B. Dhespande, et al., Mater. Res. Bull. 39, 1993 (2004).

    Article  CAS  Google Scholar 

  11. M. Anilkumar, S. R. Dhage, and V. Ravi, Mater. Lett. 59, 514 (2005).

    Article  CAS  Google Scholar 

  12. A. Yoleva, Y. Djambazov, Y. Ivanova, and E. Kashchieva, J. Univ. Chem. Technol. Met. 46, 255 (2011).

    CAS  Google Scholar 

  13. R. C. Oliveira, L. S. Cavalcante, J. C. Sczancoski, et al., J. Alloys Compd. 478, 661 (2009).

    Article  CAS  Google Scholar 

  14. X. Du, Y. Xu, H. Ma, et al., J. Am. Ceram. Soc. 91, 2079 (2008).

    Article  CAS  Google Scholar 

  15. W.-F. Su and Y. Lu, Mater. Chem. Phys. 80, 632 (2003).

    Article  CAS  Google Scholar 

  16. M. P. Pechini, US Patent 3330697 (1967).

    Google Scholar 

  17. O. Merka, D. W. Bahnemann, and M. Wark, Catal. Today 225, 102 (2014).

    Article  CAS  Google Scholar 

  18. T. Kidchob, L. Malfatti, D. Marongiu, et al., J. Am. Ceram. Soc. 93, 2897 (2010).

    Article  CAS  Google Scholar 

  19. S. N. Ivicheva, Yu. F. Kargin, S. V. Kutsev, et al., Phys. Solid State 55, 1111 (2013).

    Article  CAS  Google Scholar 

  20. S. N. Ivicheva and Yu. F. Kargin, Proceedings of XXV Conference “Modern Chemical Physics, Tuapse, 2013, p. 352.

    Google Scholar 

  21. S. N. Ivicheva and Yu. F. Kargin, Proceedings of VI International Conference “Nanosyzed Systems: Structure, Properties, Technologies” (NANSIS-2013), Kiev, 2013, p. 120.

    Google Scholar 

  22. JCPDS International Centre for Diffraction Data, All rights reserved PCPDFWIN v. 2.4, 2003.

  23. Z. Hengzholg and J. F. Banfield, J. Mater. Chem. 8, 2073 (1998).

    Article  Google Scholar 

  24. H. Zhang and J. F. Banfield, J. Phys. Chem. B 104, 3481 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Ivicheva.

Additional information

Original Russian Text © S.N. Ivicheva, Yu.F. Kargin, S.V. Kutsev, A.A. Ashmarin, 2015, published in Zhurnal Neorganicheskoi Khimii, 2015, Vol. 60, No. 11, pp. 1439–1451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivicheva, S.N., Kargin, Y.F., Kutsev, S.V. et al. Synthesis of different bismuth titanates and ordered Bi-Ti-O nanocomposites based on opal matrices. Russ. J. Inorg. Chem. 60, 1317–1328 (2015). https://doi.org/10.1134/S003602361511008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602361511008X

Keywords

Navigation