Skip to main content
Log in

Bounds on Threshold Probabilities for Coloring Properties of Random Hypergraphs

  • LARGE SYSTEMS
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We study the threshold probability for the property of existence of a special-form \(r\)⁠-⁠coloring for a random \(k\)⁠-⁠uniform hypergraph in the \(H(n,k,p)\) binomial model. A parametric set of \(j\)⁠-⁠chromatic numbers of a random hypergraph is considered. A coloring of hypergraph vertices is said to be \(j\)⁠-⁠proper if every edge in it contains no more than \(j\) vertices of each color. We analyze the question of finding the sharp threshold probability of existence of a \(j\)⁠-⁠proper \(r\)⁠-⁠coloring for \(H(n,k,p)\). Using the second moment method, we obtain rather tight bounds for this probability provided that \(k\) and \(j\) are large as compared to \(r\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cutler, J. and Radcliffe, A.J., Hypergraph Independent Sets, Combin. Probab. Comput., 2013, vol. 22, no. 1, pp. 9–20. https://doi.org/10.1017/S0963548312000454

    Article  MathSciNet  Google Scholar 

  2. Ordentlich, E. and Roth, R.M., Independent Sets in Regular Hypergraphs and Multidimensional Runlength-Limited Constraints, SIAM J. Discrete Math., 2004, vol. 17, no. 4, pp. 615–623. https://doi.org/10.1137/S0895480102419767

    Article  MathSciNet  Google Scholar 

  3. Balobanov, A.E. and Shabanov, D.A., On the Number of Independent Sets in Simple Hypergraphs, Mat. Zametki, 2018, vol. 103, no. 1, pp. 38–48 [Math. Notes (Engl. Transl.), 2018, vol. 103, no. 1–2, pp. 33–41]. https://doi.org/10.1134/S0001434618010042

    Article  MathSciNet  Google Scholar 

  4. Semenov, A.S. and Shabanov, D.A., General Independence Sets in Random Strongly Sparse Hypergraphs, Probl. Peredachi Inf., 2018, vol. 54, no. 1, pp. 63–77 [Probl. Inf. Transm. (Engl. Transl.), 2018, vol. 54, no. 1, pp. 56–69]. https://doi.org/10.1134/S0032946018010052

    MathSciNet  MATH  Google Scholar 

  5. Heckel, A., The Chromatic Number of Dense Random Graphs, Random Structures Algorithms, 2018, vol. 53, no. 1, pp. 140–182. https://doi.org/10.1002/rsa.20757

    Article  MathSciNet  Google Scholar 

  6. Shabanov, D.A., Estimating the \(r\)⁠-⁠Colorability Threshold for a Random Hypergraph, Discrete Appl. Math., 2020, vol. 282, pp. 168–183. https://doi.org/10.1016/j.dam.2019.10.031

    Article  MathSciNet  Google Scholar 

  7. Shiryaev, A.N., Veroyatnost’, 2 vols., Moscow: MCCME, 2017, 6th ed. Fourth edition translated under the title Probability, New York: Springer, 2016, 3rd ed.

    Google Scholar 

  8. Schmidt-Pruzan, J., Shamir, E., and Upfal, E., Random Hypergraph Coloring Algorithms and the Weak Chromatic Number, J. Graph Theory, 1985, vol. 9, no. 3, pp. 347–362. https://doi.org/10.1002/jgt.3190090307

    Article  MathSciNet  Google Scholar 

  9. Schmidt, J.P., Probabilistic Analysis of Strong Hypergraph Coloring Algorithms and the Strong Chromatic Number, Discrete Math., 1987, vol. 66, no. 3, pp. 259–277. https://doi.org/10.1016/0012-365X(87)90101-4

    Article  MathSciNet  Google Scholar 

  10. Shamir, E., Chromatic Number of Random Hypergraphs and Associated Graphs, Randomness and Computation, Micali, S., Ed., Adv. Comput. Res., vol. 5, Greenwich, CT: JAI Press, 1989, pp. 127–142.

    Google Scholar 

  11. Krivelevich, M. and Sudakov, B., The Chromatic Numbers of Random Hypergraphs, Random Structures Algorithms, 1998, vol. 12, no. 4, pp. 381–403. https://doi.org/10.1002/(SICI)1098-2418(199807)12:4<381::AID-RSA5>3.0.CO;2-P

    Article  MathSciNet  Google Scholar 

  12. Dyer, M., Frieze, A., and Greenhill, C., On the Chromatic Number of a Random Hypergraph, J. Combin. Theory Ser. B, 2015, vol. 113, pp. 68–122. https://doi.org/10.1016/j.jctb.2015.01.002

    Article  MathSciNet  Google Scholar 

  13. Ayre, P., Coja-Oghlan, A., and Greenhill, C., Hypergraph Coloring up to Condensation, Random Structures Algorithms, 2019, vol. 54, no. 4, pp. 615–652. https://doi.org/10.1002/rsa.20824

    Article  MathSciNet  Google Scholar 

  14. Achlioptas, D., Kim, J.H., Krivelevich,M., and Tetali, P., Two-ColoringsRandom Hypergraphs, Random Structures Algorithms, 2002, vol. 20, no. 2, pp. 249–259. https://doi.org/10.1002/rsa.997

    Article  MathSciNet  Google Scholar 

  15. Achlioptas, D. and Moore, C., On the 2-Colorability of Random Hypergraphs, Randomization and Approximation Techniques in Computer Science (Proc. 6th Int. Workshop RANDOM’2002, Cambridge, MA, USA, Sept. 13–15, 2002), Rolim, J.D.P. and Vadhan, S., Eds., Lect. Notes Comput. Sci., vol. 2483, Berlin: Springer, 2002, pp. 78–90. https://doi.org/10.1007/3-540-45726-7_7

    MATH  Google Scholar 

  16. Coja-Oghlan, A. and Zdeborov’a, L., The Condensation Transition in Random Hypergraph 2-Coloring, in Proc. 23rd Annu. ACM–SIAM Symp. on Discrete Algorithms (SODA’12), Kyoto, Japan, Jan. 17–19, 2012, pp. 241–250. https://doi.org/10.1137/1.9781611973099.22

  17. Coja-Oghlan, A. and Panagiotou, K., Catching the \(k\)-NAESAT Threshold, in Proc. 44th Annu. ACM Symp. on Theory of Computing (STOC’12), New York, USA, May 19–22, 2012, pp. 899–908. https://doi.org/10.1145/2213977.2214058

  18. Semenov, A.S., Two-Colorings of Random Hypergraphs, Teor. Veroyatn. Primen., 2019, vol. 64, no. 1, pp. 75–97 [Theory Probab. Appl. (Engl. Transl.), 2019, vol. 64, no. 1, pp. 59–77]. https://doi.org/10.1137/S0040585X97T989398

    Article  MathSciNet  Google Scholar 

  19. Balobanov, A.E. and Shabanov, D.A., On the Strong Chromatic Number of a Random 3-Uniform Hypergraph, Discrete Math., 2021, vol. 344, no. 3, Paper No. 112231 (16 pp.). https://doi.org/10.1016/j.disc.2020.112231

    Article  MathSciNet  Google Scholar 

  20. Semenov, A.S. and Shabanov, D.A., On the Weak Chromatic Number of Random Hypergraphs, Discrete Appl. Math., 2020, vol. 276, pp. 134–154. https://doi.org/10.1016/j.dam.2019.03.025

    Article  MathSciNet  Google Scholar 

  21. Hatami, H. and Molloy, M., Sharp Thresholds for Constraint Satisfaction Problems and Homomorphisms, Random Structures Algorithms, 2008, vol. 33, no. 3, pp. 310–332. https://doi.org/10.1002/rsa.20225

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research of A. Semenov was supported by the Russian Foundation for Basic Research, project no. 18-31-00348. The research of D. Shabanov was supported by the Russian Foundation for Basic Research, project no. 20-31-70039, and partially supported by the President of the Russian Federation grant no. MD-1562.2020.1.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, 2022, Vol. 58, No. 1, pp. 80–111 https://doi.org/10.31857/S0555292322010053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, A., Shabanov, D. Bounds on Threshold Probabilities for Coloring Properties of Random Hypergraphs. Probl Inf Transm 58, 72–101 (2022). https://doi.org/10.1134/S0032946022010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946022010057

Keywords

Navigation