Skip to main content
Log in

On Perfect and Reed–Muller Codes over Finite Fields

  • INFORMATION THEORY
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We consider error-correcting codes over a finite field with \(q\) elements (\(q\)-ary codes). We study relations between single-error-correcting \(q\)-ary perfect codes and \(q\)-ary Reed–Muller codes. For \(q\ge 3\) we find parameters of affine Reed–Muller codes of order \((q-1)m-2\). We show that affine Reed–Muller codes of order \((q-1)m-2\) are quasi-perfect codes. We propose a construction which allows to construct single-error-correcting \(q\)-ary perfect codes from codes with parameters of affine Reed–Muller codes. A modification of this construction allows to construct \(q\)-ary quasi-perfect codes with parameters of affine Reed–Muller codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.

    MATH  Google Scholar 

  2. Kasami, T., Lin, S., and Peterson, W., New Generalizations of the Reed–Muller Codes. I: Primitive Codes, IEEE Trans. Inform. Theory, 1968, vol. 14, no. 2, pp. 189–199. https://doi.org/10.1109/TIT.1968.1054127

    Article  MathSciNet  Google Scholar 

  3. Lachaud, G., The Parameters of Projective Reed–Müller Codes, Discrete Math., 1990, vol. 81, no. 2, pp. 217–221. https://doi.org/10.1016/0012-365X(90)90155-B

    Article  MathSciNet  Google Scholar 

  4. Sørensen, A.B., Projective Reed–Muller Codes, IEEE Trans. Inform. Theory, 1991, vol. 37, no. 6, pp. 1567–1576. https://doi.org/10.1109/18.104317

    Article  MathSciNet  Google Scholar 

  5. Berger, T. and Charpin, P., The Automorphism Group of Generalized Reed–Muller Codes, Discrete Math., 1993, vol. 117, no. 1–3, pp. 1–17. https://doi.org/10.1016/0012-365X(93)90321-J

    Article  MathSciNet  Google Scholar 

  6. Berger, T.P., Automorphism Groups of Homogeneous and Projective Reed–Muller Codes, IEEE Trans. Inform. Theory, 2002, vol. 48, no. 5, pp. 1035–1045. https://doi.org/10.1109/18.995540

    Article  MathSciNet  Google Scholar 

  7. Huffman, W.C. and Pless, V., Fundamentals of Error-Correcting Codes, Cambridge: Cambridge Univ. Press, 2003.

    Book  Google Scholar 

  8. Romanov, A.M., On Non-Full-Rank Perfect Codes over Finite Fields, Des. Codes Cryptogr., 2019, vol. 87, no. 5, pp. 995–1003. https://doi.org/10.1007/s10623-018-0506-1

    Article  MathSciNet  Google Scholar 

  9. Phelps, K.T., A Combinatorial Construction of Perfect Codes, SIAM J. Algebr. Discrete Methods, 1983, vol. 4, no. 2, pp. 398–403. https://doi.org/10.1137/0604040

    Article  MathSciNet  Google Scholar 

  10. Phelps, K.T., A General Product Construction for Error Correcting Codes, SIAM J. Algebr. Discrete Methods, 1984, vol. 5, no. 2, pp. 224–228. https://doi.org/10.1137/0605023

    Article  MathSciNet  Google Scholar 

  11. Zinoviev, V.A., Generalized Concatenated Codes, Probl. Peredachi Inf., 1976, vol. 12, no. 1, pp. 5–15 [Probl. Inf. Transm. (Engl. Transl.), 1976, vol. 12, no. 1, pp. 2–9]. http://mi.mathnet.ru/eng/ppi1670

    Google Scholar 

  12. Borges, J., Rifà, J., and Zinoviev, V.A., On Completely Regular Codes, Probl. Peredachi Inf., 2019, vol. 55, no. 1, pp. 3–50 [Probl. Inf. Transm. (Engl. Transl.), 2019, vol. 55, no. 1, pp. 1–45]. https://doi.org/10.1134/S0032946019010010

    MathSciNet  MATH  Google Scholar 

  13. Assmus, E.F. and Key, J.D., Polynomial Codes and Finite Geometries, Handbook of Coding Theory, Pless, V.S., Huffman, W.C., and Brualdi, R.A., Eds., Amsterdam: Elsevier, 1998, vol. II, pp. 1269–1344.

    Google Scholar 

  14. Delsarte, P., Goethals, J.-M., and MacWilliams, F.J., On Generalized Reed–Muller Codes and Their Relatives, Inform. Control, 1970, vol. 16, no. 5, pp. 403–442. https://doi.org/10.1016/S0019-9958(70)90214-7

    Article  MathSciNet  Google Scholar 

  15. Delsarte, P., An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep. Suppl., 1973, no. 10.

    Google Scholar 

  16. van Tilborg, H.C.A., Uniformly Packed Codes, PhD Thesis, Tech. Univ. Eindhoven, The Netherlands, 1976.

    Google Scholar 

  17. Goethals, J.-M. and van Tilborg, H.C.A., Uniformly Packed Codes, Philips Res. Rep., 1975, vol. 30, pp. 9–36.

    MathSciNet  MATH  Google Scholar 

  18. Laywine, C.F. and Mullen, G.L., Discrete Mathematics Using Latin Squares, New York: Wiley, 1998.

    MATH  Google Scholar 

Download references

Acknowledgment

The author is sincerely grateful to a reviewer for valuable remarks and suggestions, which helped him to considerably improve the original version of the paper.

Funding

The research was supported by the Fundamental Scientific Research Program no. I.5.1 of the Siberian Branch of the Russian Academy of Sciences, project no. 0314-2019-0017.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, 2021, Vol. 57, No. 3, pp. 3–16 https://doi.org/10.31857/S0555292321030013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, A. On Perfect and Reed–Muller Codes over Finite Fields. Probl Inf Transm 57, 199–211 (2021). https://doi.org/10.1134/S0032946021030017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946021030017

keywords

Navigation