Skip to main content
Log in

Growth and Age of the Blue Antimora Antimora rostrata (Moridae) in Waters of the Flemish Cap (Northwest Atlantic)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract—

Growth and age of blue antimora were studied in waters of the Flemish Cap (Northwest Atlantic). Bottom trawl catches were represented by specimens aged 2–43 years, with total length of 112–680 mm and body weight of 6–2830 g. Fish at the age of 14–26 years (62% of catches) prevailed. The growth rates of males and females were similar, but males had a slightly shorter life expectancy (the maximum age was 41 and 43 years, respectively) and less average age (19.9 and 22.6 years, respectively). The species growth is best described by a logistic function (coefficients: а = 61.9, b = 5.4, с = 0.1). Comparison with the data from other regions was made using the von Bertalanffy growth equation with the following parameters: L = 142.9, k = 0.01, t0 = −2.9. Blue antimora from the Northwest Atlantic turned out to be the most slow growing compared to the specimens from other areas of the species range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Alimov, A.F., Vvedenie v produktsionnuyu gidrobiologiyu (Introduction to Production Hydrobiology), Leningrad: Gidrometeoizdat, 1989.

  2. Beamish, R.J. and Chilton, D.E., Preliminary evaluation of a method to determine the age of sablefish (Anoplopoma fimbria), Can. J. Fish. Aquat. Sci., 1982, vol. 39, no. 2, pp. 277–287. https://doi.org/10.1139/f82-039

    Article  Google Scholar 

  3. Beamish, R.J. and McFarlane, G.A., Reevaluation of the interpretation of annuli from otoliths of a long-lived fish, Anoplopoma fimbria, Fish. Res., 2000, vol. 46, nos. 1–3, pp. 105–111. https://doi.org/10.1016/S0165-7836(00)00137-5

    Article  Google Scholar 

  4. Bertalanffy, L., A quantitative theory of organic growth (inquiries on growth laws. II), Hum. Biol., 1938, vol. 10, pp. 181–213.

    Google Scholar 

  5. Buslov, A.V., Determination of the age of cods (Gadidae) in the Far Eastern seas: theoretical provisions and methodological approaches (review), Issled. Vodn. Biol. Resur. Kamchatki Sev.-Zap. Ch. Tikh. Okeana, 2009, no. 14, pp. 32–46.

  6. Cailliet, G.M., Andrews, A.H., Burton, E.J., et al., Age determination and validation studies of marine fishes: Do deep-dwellers live longer?, Exp. Gerontol., 2001, vol. 36, nos. 4–6, pp. 739–764. https://doi.org/10.1016/S0531-5565(00)00239-4

    Article  CAS  PubMed  Google Scholar 

  7. Cohen, D.M., Inada, T., Iwamoto, T., and Scialabba, N., Gadiform Fishes of the World (Order Gadiformes). An Annotated and Illustrated Catalogue of Cods, Hakes, Grenadiers and Other Gadiform Fishes Known to Date, FAO Fish. Synopsis, vol. 10, no. 125, Rome: FAO, 1990.

  8. Davletshina, T.A., Shul’gina, L.V., Pavel’, K.G., and Mal’tsev, I.V., Technochemical characteristics of a deep-sea object fine-scale antimora Antimora microlepis, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2019, vol. 198, pp. 230–238. https://doi.org/10.26428/1606-9919-2019-198-230-238

    Article  Google Scholar 

  9. Fenton, G.E. and Short, S.A., Radiometric analysis of blue grenadier, Macrunonus novaezelandiae, otolith cores, Fish. Bull., 1995, vol. 93, no. 2, pp. 391–396.

    Google Scholar 

  10. Fossen, I. and Bergstad, O.A., Distribution and biology of blue hake Antimora rostrata (Pisces: Moridae), along the Mid-Atlantic Ridge and off Greenland, Fish. Res., 2006, vol. 82, nos 1–3, pp. 19–29. https://doi.org/10.1016/j.fishres.2006.08.023

    Article  Google Scholar 

  11. Frey, P.H., Keller, A.A., and Simon, V., Dynamic population trends observed in the deep-living Pacific flatnose, Antimora microlepis, on the US West Coast, Deep-Sea Res. I: Oceanogr. Res. Pap., 2017. vol. 122, pp. 105–112. https://doi.org/10.1016/j.dsr.2017.03.006

    Article  Google Scholar 

  12. Gordeev, I., Sokolov, S., Bañon, R., et al., Parasites of the blue antimora, Antimora rostrata and slender codling, Halargyreus johnsonii (Gadiformes: Moridae), in the Northwestern Atlantic, Acta Parasitol., 2019, vol. 64, no. 3, pp. 489–500. https://doi.org/10.2478/s11686-019-00074-4

    Article  CAS  PubMed  Google Scholar 

  13. Gordon, J.D.M. and Duncan, J.A.R., The biology of fish of the family Moridae in the deep-water of the Rockall Trough, J. Mar. Biol. Ass. UK, 1985, vol. 65, no. 2, pp. 475–485. https://doi.org/10.1017/S0025315400050554

    Article  Google Scholar 

  14. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, p. 9. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

  15. Horn, P.L. and Sutton, C.P., An assessment of age and growth of violet cod (Antimora rostrata) in the Ross Sea, Antarctica, Polar Biol., 2015, vol. 38, no. 9, pp. 1553–1558. https://doi.org/10.1007/s00300-015-1702-3

    Article  Google Scholar 

  16. Iwamoto, T., Antimora microlepis, The IUCN Red List of Threatened Species 2010, Article e.T155287A4766841. https://doi.org/10.2305/IUCN.UK.2010-4.RLTS.T15528-7A4766841.en

  17. Iwamoto, T., Antimora rostrata, The IUCN Red List of Threatened Species 2015, Article e.T190385A15603090. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T19038-5A15603090.en

  18. Kastelle, C.R., Kimura, D.K., Nevissi, A.E., and Gunderson, D.R., Using Pb-210/Ra-226 disequilibria for sablefish, Anoplopoma fimbria, age validation, Fish. Bull., 1994, vol. 92, no. 2, pp. 292–301.

    Google Scholar 

  19. Katsanevakis, S. and Maravelias, C.D., Modelling fish growth: Multi-model inference as a better alternative to a priori using von Bertalanffy equation, Fish Fish., 2008, vol. 9, no. 2, pp. 178–187. https://doi.org/10.1111/j.1467-2979.2008.00279.x

    Article  Google Scholar 

  20. Korostelev, N.B. and Orlov, A.M., Micro- and ultramicroelemental content in otoliths of blue antimora Antimora rostrata and Pacific flatnose A. microlepis (Moridae, Teleostei), Oceanology, 2020, vol. 60, no. 6, pp. 798–802. https://doi.org/10.1134/S0001437020050094

  21. Korostelev, N.B., Frey, P.H., and Orlov, A.M., Using different hard structures to estimate the age of deep-sea fishes; a case study of the Pacific flatnose, Antimora microlepis (Moridae, Gadiformes, Teleostei), Fish. Res., 2020a, vol. 232, Article 105731, 4 p. https://doi.org/10.1016/j.fishres.2020.105731

  22. Korostelev, N.B., Vedishcheva, E.V., and Orlov, A.M., Age and growth of Antimora rostrata (Moridae, Gadiformes, Teleostei) from the Kerguelen and Crozet Islands in the southern Indian Ocean, Polar Rec., 2020b, vol. 55, no. 6, pp. 452–459. https://doi.org/10.1017/S0032247420000157

    Article  Google Scholar 

  23. Korostelev, N.B., Baitalyuk, A.A., Maltsev, I.V., and Orlov, A.M., First data on the age and growth in Pacific flatnose Antimora microlepis (Moridae) from the waters of the underwater Emperor Mountain Range (Northwestern Pacific), J. Ichthyol., 2020c, vol. 60, no. 6, pp. 891–899. https://doi.org/10.1134/S0032945220060028

    Article  Google Scholar 

  24. Kulka, D.W., Simpson, M.R., and Inkpen, T.D., Distribution and biology of blue hake (Antimora rostrata Günther, 1878) in the Northwest Atlantic with comparison to adjacent areas, J. Northw. Atlant. Fish. Sci., 2003, vol. 31, pp. 299–318.

    Article  Google Scholar 

  25. Laevastu, T., Manual of Methods in Fisheries Biology, Rome: FAO, 1965.

    Google Scholar 

  26. Magnússon, J.V., Distribution and some other biological parameters of two morid species Lepidion eques (Günther, 1887) and Antimora rostrata (Günther, 1878) in Icelandic waters, Fish. Res., 2001, vol. 51, nos. 2–3, pp. 267–281. https://doi.org/10.1016/S0165-7836(01)00251-X

    Article  Google Scholar 

  27. Mina, M.V. and Klevezal’, G.A., Rost zhivotnykh (Animal Growth), Moscow: Nauka, 1976.

  28. Morozov, A.V, Methods of collecting and processing ichthyological materials, Tr. Nauchno-Issled. Inst. Rybn. Khoz., 1929, vol. 5, no 1, Fisheries of Turkmenistan, pp. 172–189.

  29. Nikol’skii, G.V., Ekologiya ryb (Fish Ecology), Moscow: Vyssh. Shk., 1963.

  30. Novikov, N.P., Panov, B.N., Rebik, S.T., and Timokhin, I.G., Ryby otkrytykh vod Indiiskogo okeana (Fishes of the Open Waters of the Indian Ocean), Kerch: Yuzh. Nauchno-Issled. Inst. Rybn. Khoz., 2010.

  31. Novikov, N.P. and Timokhin, I.G., Antimora Antimora rostrata (Moridae) of submarine uplifts of the southern part of the Indian Ocean, Ribne Gospodarstvo Ukraïny, 2009, no. 1, pp. 2–5.

  32. Orlov, A.M. and Abramov, A.A., New data on Pacific flatnose, Antimora microlepis (Moridae) from the northwestern Pacific Ocean, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings, Honolulu, 2001, vol. 2, pp. 833–841. https://doi.org/10.1109/OCEANS.2001.968227

  33. Orlov, A.M. and Abramov, A.A, New data on fine-scale antimora Antimora microlepis (Moridae) from the northwestern part of the Pacific Ocean, Vopr. Ikhtiol., 2002, vol. 42, no. 1, pp. 65–73.

    Google Scholar 

  34. Orlov, A.M., Bannikov, A.F., and Orlova, S.Yu., Hypothesis of Antimora spp. (Moridae) dispersion in the world oceans based on data on modern distribution, genetic analysis, and ancient records, J. Ichthyol., 2020, vol. 60, no. 3, pp. 399–410. https://doi.org/10.1134/S0032945220030108

    Article  Google Scholar 

  35. Orlov, A.M., Vedishcheva, E.V., Trofimova, A.O., and Orlova, S.Yu., Age and growth of blue antimora Antimora rostrata (Moridae) in southwestern Greenland waters, J. Ichthyol., 2018a, vol. 58, no. 2, pp. 217–225. https://doi.org/10.1134/S0032945218020108

    Article  Google Scholar 

  36. Orlov, A.M., Grigorov, I.V., and Lazareva, N.I., Comparative morphological analysis of antimoras (Antimora spp., Moridae, Gadiformes) based on ichthyological collections, Zool. Issled., 2018b, no. 20, pp. 98–111.

  37. Orlova, S.Yu., Volkov, A.A., Gordeev, I.I., et al., Diversity of the CO1 gene of mitochondrial DNA in representatives of genus Antimora (Moridae, Gadiformes) in the World Oceans, Dokl. Biol. Sci., 2018, vol. 482, no. 1, pp. 279–283. https://doi.org/10.1134/S1607672918050137

    Article  CAS  Google Scholar 

  38. Paloheimo, J.E. and Dickie, L.M., Food and growth of fishes. 1. A growth curve derived from experimental data, J. Fish. Res. Board Can., 1965, vol. 22, no. 2, pp. 521–542. https://doi.org/10.1139/f65-048

    Article  Google Scholar 

  39. Parker, R.R. and Larkin, P.A., A concept of growth in fishes, J. Fish. Res. Board Can., 1959, vol. 16, no. 5, pp. 721–745. https://doi.org/10.1139/f59-052

    Article  Google Scholar 

  40. Pravdin, I.F., Rukovodstvo po izucheniyu ryb (Guide to the Study of Fish), Moscow: Pishchevaya Prom-st, 1966.

  41. Priede, I.G., Deep-Sea Fishes. Biology, Diversity, Ecology and Fisheries, Cambridge: CUP, 2017.

    Book  Google Scholar 

  42. Rodríguez Mendoza, R.P., Otoliths and their applications in fishery science, Ribarstvo, 2006, vol. 64, no. 3, pp. 89–102.

    Google Scholar 

  43. Roff, D.A., A motion for the retirement of the von Bertalanffy function, Can. J. Fish. Aquat. Sci., 1980, vol. 37, no. 1, pp. 127–129. https://doi.org/10.1139/f80-016

    Article  Google Scholar 

  44. Schnute, J., A versatile growth model with statistically stable parameters, Can. J. Fish. Aquat. Sci., 1981, vol. 38, no. 9, pp. 1128–1140. https://doi.org/10.1139/f81-153

    Article  Google Scholar 

  45. Small, G.J., A review of the bathyal fish genus Antimora (Moridae: Gadiformes), Proc. Calif. Acad. Sci., 1981, vol. 42, no. 13, pp. 341–348.

    Google Scholar 

  46. Smith, J.N., Nelson, R., and Campana, S.E., The use of Pb-210/Ra-226 and Th-228/Ra-228 dis-equilibria in the ageing of otoliths of marine fish, in Radionuclides in the Study of Marine Processes, Dordrecht: Springer, 1991, pp. 350–359. https://doi.org/10.1007/978-94-011-3686-0_37

  47. Ursin, E., A mathematical model of some aspects of fish growth respiration and mortality, J. Fish. Res. Board Can., 1967, vol. 24, no. 11, pp. 2355–2453. https://doi.org/10.1139/f67-190

    Article  Google Scholar 

  48. Vedishcheva, E.V., Korostelev, N.B., Gordeev, I.I., and Orlov, A.M., A first attempt to evaluate the age and growth of blue hake Antimora rostrata (Moridae, Gadiformes, Teleostei) from the Lazarev and Weddell seas (Antarctic), Polar Rec., 2019, vol. 55, no. 1, pp. 25–31. https://doi.org/10.1017/S0032247419000147

    Article  Google Scholar 

  49. Wenner, C.A. and Musick, J.A., Biology of the morid fish Antimora rostrata in the western North Atlantic, J. Fish. Res. Board Can., 1977, vol. 24, no. 12, pp. 2362–2368. https://doi.org/10.1139/f77-316

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.E. Kvashnina (Denezhkin Kamen Nature Reserve) for assistance in making the maps. We are grateful to two anonymous reviewers for their comments and suggestions, resulting in considerable improvements to the manuscript.

Funding

This study received no external funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Orlov.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korostelev, N.B., Bañon, R. & Orlov, A.M. Growth and Age of the Blue Antimora Antimora rostrata (Moridae) in Waters of the Flemish Cap (Northwest Atlantic). J. Ichthyol. 62, 908–920 (2022). https://doi.org/10.1134/S0032945222050071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222050071

Keywords:

Navigation