Skip to main content
Log in

Longitudinal Magnetoresistance of Ta/Dy/Ta Nanostructures

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The Ta/Dy/Ta nanostructures are fabricated by high-vacuum magnetron sputtering. Resistance and longitudinal magnetoresistance are measured. It is shown that the observed the effect of magnetic field on resistance are due to the competition of two effects of different nature. The negative isotropic magnetoresistance in the dysprosium layer is due to the alignment of local magnetic moments in the direction of the applied magnetic field. The positive longitudinal magnetoresistance in tantalum layers is caused by a change in the conditions of scattering of electrons during the accumulation of electrons with opposite spins on opposite surfaces of the metal film with strong spin-orbit coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J.-G. Choi, J. W. Lee, and B.-G. Park, “Spin Hall magnetoresistance in heavy-metal/metallic-ferromagnet multilayer structures,” Phys. Rev. B 96, 174412 (2017). https://doi.org/10.1103/physrevb.96.174412

    Article  ADS  CAS  Google Scholar 

  2. L. I. Naumova, M. A. Milyaev, R. S. Zavornitsyn, T. P. Krinitsina, V. V. Proglyado, and V. V. Ustinov, “Spin valve with a composite dysprosium-based pinned layer as a tool for determining Dy nanolayer helimagnetism,” Curr. Appl. Phys. 19, 1252–1258 (2019). https://doi.org/10.1016/j.cap.2019.08.012

    Article  ADS  Google Scholar 

  3. A. V. Svalov, V. O. Vas’kovskiy, and G. V. Kurlyandskaya, “Influence of the size and structural factors on the magnetism of multilayer films based on 3d and 4f metals,” Phys. Met. Metallogr. 118, 1263–1299 (2017). https://doi.org/10.1134/s0031918x17130026

    Article  ADS  CAS  Google Scholar 

  4. K. P. Belov, R. Z. Levitin, and S. A. Nikitin, “Ferromagnetism and antiferromagnetism of rare-earth metals,” Sov. Phys. Usp. 7, 179–208 (1964). https://doi.org/10.1070/pu1964v007n02abeh003660

    Article  ADS  Google Scholar 

  5. K. Dumesnil, C. Dufour, Ph. H. Mangin, G. Marchal, and M. Hennion, “Magnetic structure of dysprosium in epitaxial Dy films and in Dy/Er superlattices,” Phys. Rev. B 54, 6407–6420 (1996). https://doi.org/10.1103/physrevb.54.6407

    Article  ADS  CAS  Google Scholar 

  6. G. Scheunert, W. R. Hendren, A. A. Lapicki, P. Jesudoss, R. Hardeman, M. Gubbins, and R. M. Bowman, “Improved magnetization in sputtered dysprosium thin films,” J. Phys. D: Appl. Phys. 46, 152001 (2013). https://doi.org/10.1088/0022-3727/46/15/152001

    Article  ADS  CAS  Google Scholar 

  7. M. K. Wilkinson, W. C. Koehler, E. O. Wollan, and J. W. Cable, “Neutron diffraction investigation of magnetic ordering in dysprosium,” J. Appl. Phys. 32, S48–S49 (1961). https://doi.org/10.1063/1.2000493

    Article  ADS  Google Scholar 

  8. M. B. Salamon, S. Sinha, J. J. Rhyne, J. E. Cunningham, R. W. Erwin, J. Borchers, and C. P. Flynn, “Long-range incommensurate magnetic order in a Dy–Y multilayer,” Phys. Rev. Lett. 56, 259–262 (1986). https://doi.org/10.1103/physrevlett.56.259

    Article  ADS  CAS  Google Scholar 

  9. P. M. Hall, S. Legvold, and F. H. Spedding, “Electrical resistivity of dysprosium single crystals,” Phys. Rev. 117, 971–973 (1960). https://doi.org/10.1103/physrev.117.971

    Article  ADS  Google Scholar 

  10. D. W. Boys and S. Legvold, “Thermal conductivities and lorenz functions of Dy, Er, and Lu single crystals,” Phys. Rev. 174, 377–384 (1968). https://doi.org/10.1103/physrev.174.377

    Article  ADS  CAS  Google Scholar 

  11. S. V. Vonsovskiĭ and Yu. A. Izyumov, “Electron theory of transition metals. I,” Sov. Phys. Usp. 5, 547–593 (1963). https://doi.org/10.1070/pu1963v005n04abeh003438

    Article  ADS  Google Scholar 

  12. D. H. Dennison, M. J. Tschetter, and K. A. Gschneidner, “The solubility of tantalum in eight liquid rare-earth metals,” J. Less Common Met. 10, 108–115 (1965). https://doi.org/10.1016/0022-5088(66)90119-6

    Article  Google Scholar 

  13. L. I. Naumova, R. S. Zavornitsyn, M. A. Milyaev, M. V. Makarova, V. V. Proglyado, A. S. Rusalina, and V. V. Ustinov, “The magnetotransport properties of spin valves based on exchange-coupled Dy helimagnetic and Co90Fe10 ferromagnetic nanolayers,” Phys. Met. Metallogr. 123, 945–953 (2023). https://doi.org/10.1134/s0031918x22600932

    Article  ADS  CAS  Google Scholar 

  14. J. D. Zuo, Y. Q. Wang, K. Wu, J. Y. Zhang, G. Liu, and J. Sun, “Phase tailoring of Ta films via buffer layer-thicknesses controlling,” Scr. Mater. 212, 114582 (2022). https://doi.org/10.1016/j.scriptamat.2022.114582

    Article  CAS  Google Scholar 

  15. M. Magnuson, G. Greczynski, F. Eriksson, L. Hultman, and H. Högberg, “Electronic structure of β-Ta films from X-ray photoelectron spectroscopy and first-principles calculations,” Appl. Surf. Sci. 470, 607–612 (2019). https://doi.org/10.1016/j.apsusc.2018.11.096

    Article  ADS  CAS  Google Scholar 

  16. T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, “Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals,” Phys. Rev. B 77, 165117 (2008). https://doi.org/10.1103/physrevb.77.165117

    Article  ADS  Google Scholar 

  17. S. Vélez, V. N. Golovach, A. Bedoya-Pinto, M. Isasa, E. Sagasta, M. Abadia, C. Rogero, L. E. Hueso, F. S. Bergeret, and F. Casanova, “Hanle magnetoresistance in thin metal films with strong spin-orbit coupling,” Phys. Rev. Lett. 116, 16603 (2016). https://doi.org/10.1103/physrevlett.116.016603

    Article  ADS  Google Scholar 

  18. M. I. Dyakonov, “Magnetoresistance due to edge spin accumulation,” Phys. Rev. Lett. 99, 126601 (2007). https://doi.org/10.1103/physrevlett.99.126601

    Article  ADS  CAS  Google Scholar 

  19. Yi. Cao, G. Xing, H. Lin, N. Zhang, H. Zheng, and K. Wang, “Prospect of spin-orbitronic devices and their applications,” iScience 23, 101614 (2020). https://doi.org/10.1016/j.isci.2020.101614

  20. R. Ramaswamy, J. M. Lee, K. Cai, and H. Yang, “Recent advances in spin-orbit torques: Moving towards device applications,” Appl. Phys. Rev. 5, 031107 (2018). https://doi.org/10.1063/1.5041793

    Article  ADS  CAS  Google Scholar 

  21. V. V. Ustinov and I. A. Yasyulevich, “Electrical magnetochiral effect and kinetic magnetoelectric effect induced by chiral exchange field in helical magnetics,” Phys. Rev. B 102, 134421 (2020). https://doi.org/10.1103/physrevb.102.134431

    Article  ADS  CAS  Google Scholar 

  22. V. V. Yurlov, K. A. Zvezdin, P. N. Skirdkov, and A. K. Zvezdin, “Domain wall dynamics of ferrimagnets influenced by spin current near the angular momentum compensation temperature,” Phys. Rev. B 103, 134442 (2021). https://doi.org/10.1103/physrevb.103.134442

    Article  ADS  CAS  Google Scholar 

  23. L. I. Naumova, R. S. Zavornitsyn, M. A. Milyaev, M. V. Makarova, V. V. Proglyado, and V. V. Ustinov, “Magnetoresistive properties of Dy-based bottom spin valve,” IEEE Trans. Nanotechnol. 20, 866–872 (2021). https://doi.org/10.1109/tnano.2021.3130668

    Article  ADS  CAS  Google Scholar 

  24. L. I. Naumova, R. S. Zavornitsyn, M. A. Milyaev, M. V. Makarova, V. V. Proglyado, and V. V. Ustinov, “Formation of unidirectional magnetic anisotropy in a spin valve containing a dysprosium layer,” Phys. Met. Metallogr. 122, 540–546 (2021). https://doi.org/10.1134/s0031918x21060089

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The work was carried out with the support of the project RSF no. 22-22-00220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Naumova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumova, L.I., Bebenin, N.G., Zavornitsyn, R.S. et al. Longitudinal Magnetoresistance of Ta/Dy/Ta Nanostructures. Phys. Metals Metallogr. 124, 1768–1775 (2023). https://doi.org/10.1134/S0031918X2360241X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2360241X

Keywords:

Navigation