Skip to main content
Log in

Hydrogenation-Induced Modification of the Crystal Structure of Fe/Gd Superlattices

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Structural studies of multilayer magnetic nanostructures formed by alternating layers of transition (Fe) and rare-earth (Gd) metals, which are placed into a hydrogen atmosphere at 100°C, are performed. The hydrogen absorption of rare-earth metals results in the formation of GdHx crystalline phases, the microstructural peculiarities of which are studied by X-ray diagnostics techniques and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. G. Wiesinger and G. Hilscher, “Magnetism of hydrides,” in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, 2007), Vol. 17, pp. 293–456. https://doi.org/10.1016/s1567-2719(07)17005-0

    Book  Google Scholar 

  2. A. B. Drovosekov, A. O. Savitsky, D. I. Kholin, N. M. Kreines, V. V. Proglyado, M. V. Makarova, E. A. Kravtsov, and V. V. Ustinov, “Twisted magnetization states and inhomogeneous resonance modes in a Fe/Gd ferrimagnetic multilayer,” J. Magn. Magn. Mater. 475, 668–674 (2019). https://doi.org/10.1016/j.jmmm.2018.12.022

    Article  ADS  CAS  Google Scholar 

  3. B. Hjörvarsson, J. A. Dura, P. Isberg, T. Watanabe, T. J. Udovic, G. Andersson, and C. F. Majkrzak, “Reversible tuning of the magnetic exchange coupling in Fe/V (001) superlattices using hydrogen,” Phys. Rev. Lett. 79, 901–904 (1997). https://doi.org/10.1103/physrevlett.79.901

    Article  ADS  Google Scholar 

  4. F. Klose, C. H. Rehm, D. Nagengast, H. Maletta, and A. Weidinger, “Continuous and reversible change of the magnetic coupling in an Fe/Nb multilayer induced by hydrogen charging,” Phys. Rev. Lett. 78, 1150–1153 (1997). https://doi.org/10.1103/physrevlett.78.1150

    Article  ADS  CAS  Google Scholar 

  5. V. Leiner, M. Ay, and H. Zabel, “Hydrogen and the magnetic interlayer exchange coupling: Variable magnetic interlayer correlation in Ho/Y(00.1) superlattices,” Phys. Rev. B 70, 104429 (2004). https://doi.org/10.1103/physrevb.70.104429

    Article  ADS  Google Scholar 

  6. I. J. Lee, J.-Yo. Kim, C. Yu, Ch.-H. Chang, M.-K. Joo, Yo. P. Lee, T.-B. Hur, and H.-K. Kim, “Morphological and structural characterization of epitaxial α-Fe2O3 (0001) deposited on Al2O3 (0001) by dc sputter deposition,” J. Vac. Sci. Technol. A 23, 1450–1455 (2005).

    Article  Google Scholar 

  7. M. Andreeva, R. Baulin, A. Nosov, I. Gribov, V. Izyurov, O. Kondratev, I. Subbotin, and E. Pashaev, “Mössbauer synchrotron and X-ray studies of ultrathin YFeO3 films,” Magnetism 2, 328–339 (2022). https://doi.org/10.3390/magnetism2040023

    Article  Google Scholar 

  8. E. J. Grier, O. Kolosov, A. K. Petford-Long, R. C. C. Ward, M. R. Wells, and B. Hjörvarsson, “Structural changes to epitaxial (0001) holmium layers during hydrogen loading,” J. Phys. D: Appl. Phys. 33, 894–900 (2000). https://doi.org/10.1088/0022-3727/33/8/302

    Article  ADS  CAS  Google Scholar 

  9. C. Sutter, D. Labergerie, A. Remhof, H. Zabel, C. Detlefs, and G. Grübel, “X-ray magnetic-scattering study of magnetism in hydrogenated thin holmium films,” Europhysics Lett. 53, 257–263 (2001). https://doi.org/10.1209/epl/i2001-00146-1

    Article  ADS  CAS  Google Scholar 

  10. Y. Manassen, H. Realpe, and D. Schweke, “Dynamics of H in a thin Gd film: Evidence of spinodal decomposition,” J. Phys. Chem. C 123, 11933–11938 (2019). https://doi.org/10.1021/acs.jpcc.9b00932

    Article  CAS  Google Scholar 

  11. Ya. Kamada, A. Itoh, D. Takama, and M. Yamamoto, “Effects of hydrogenation on the structure, transport, and magnetic properties of multilayers composed of transition metals and rare-earth metals,” Trans. Magn. Soc. Jpn. 2 (2), 69–75 (2002). https://doi.org/10.3379/tmjpn2001.2.69

    Article  CAS  Google Scholar 

  12. B. A. Aronzon, M. V. Kovalchuk, E. M. Pashaev, M. A. Chuev, V. V. Kvardakov, I. A. Subbotin, V. V. Rylkov, M. A. Pankov, I. A. Likhachev, B. N. Zvonkov, Yu. A. Danilov, O. V. Vihrova, A. V. Lashkul, and R. Laiho, “Structural and transport properties of GaAs/δ-Mn/GaAs/InxGa1 – xAs/GaAs quantum wells,” J. Phys.: Condens. Matter 20, 145207 (2008). https://doi.org/10.1088/0953-8984/20/14/145207

    Article  ADS  CAS  Google Scholar 

  13. E. M. Pashaev, A. L. Vasiliev, I. A. Subbotin, G. V. Prutskov, Yu. M. Chesnokov, M. V. Kovalchuk, N. O. Antropov, E. A. Kravtsov, V. V. Proglyado, and V. V. Ustinov, “Analysis of structural features of periodic Fe/Pd/Gd/Pd multilayered systems,” Crystallogr. Rep. 65, 985–994 (2020). https://doi.org/10.1134/s1063774520060243

    Article  ADS  CAS  Google Scholar 

  14. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The Materials Project: A materials genome approach to accelerating materials innovation,” APL Mater. 1, 11002 (2013). https://doi.org/10.1063/1.4812323

    Article  ADS  CAS  Google Scholar 

  15. R. Roberge, “Lattice parameter of niobium between 4.2 and 300 K,” J. Less Common Met. 40, 161–164 (1975). https://doi.org/10.1016/0022-5088(75)90193-9

    Article  CAS  Google Scholar 

  16. R. W. G. Wyckoff, “Sample at T = 293 K hexagonal closest packed, hcp, structure,” in Crystal Structures, 2nd ed. (Interscience Publishers, New York, 1963), pp. 7–83.

    Google Scholar 

  17. M. Brill, I. Halevy, G. Kimmel, M. H. Mintz, and J. Bloch, “The initial stage of the hydriding of gadolinium metal at 100°C and sub-ambient pressure,” J. Alloys Compd. 330–332, 93–98 (2002). https://doi.org/10.1016/s0925-8388(01)01520-1

    Article  Google Scholar 

  18. S. Wanjelik, O. Stolboushkina, S. Königshofen, and M. Getzlaff, “Initial step of hydride formation in single crystalline gadolinium thin films and islands studied on the nm-scale,” J. Alloys Compd. 645, S221–S224 (2015). https://doi.org/10.1016/j.jallcom.2015.01.053

    Article  CAS  Google Scholar 

  19. Yu. M. Chesnokov, A. L. Vasiliev, G. V. Prutskov, E. M. Pashaev, I. A. Subbotin, E. A. Kravtsov, and V. V. Ustinov, “Microstructure of periodic metallic magnetic multilayer systems,” Thin Solid Films 632, 79–87 (2017). https://doi.org/10.1016/j.tsf.2017.04.033

    Article  ADS  CAS  Google Scholar 

  20. I. A. Subbotin, E. M. Pashaev, A. L. Vasiliev, Yu. M. Chesnokov, G. V. Prutskov, E. A. Kravtsov, M. V. Makarova, V. V. Proglyado, and V. V. Ustinov, “The influence of microstructure on perpendicular magnetic anisotropy in Co/Dy periodic multilayer systems,” Phys. B: Condens. Matter 573, 28–35 (2019). https://doi.org/10.1016/j.physb.2019.06.044

    Article  ADS  CAS  Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Oxford, 1964).

    Google Scholar 

  22. F. Abelès, “La théorie générale des couches minces,” J. Phys. Radium 11, 307–309 (1950). https://doi.org/10.1051/jphysrad:01950001107030700

    Article  Google Scholar 

  23. J. Daillant and A. Gibaud, X-ray and Neutron Reflectivity: Principles and Applications, Lecture Notes in Physics, Vol. 770 (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-88588-7

    Book  Google Scholar 

  24. S. N. Yakunin, I. A. Makhotkin, K. V. Nikolaev, R. W. E. van de Kruijs, M. A. Chuev, and F. Bijkerk, “Combined EUV reflectance and X-ray reflectivity data analysis of periodic multilayer structures,” Opt. Express 22, 20076 (2014). https://doi.org/10.1364/oe.22.020076

    Article  ADS  CAS  PubMed  Google Scholar 

  25. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, Vol. 4 (Pergamon Press, Oxford, 1967). https://doi.org/10.1016/C2013-0-08243-6

  26. M. P. Dariel, “Diffusion in rare earth metals,” in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr. and L. Eyring (1978), Vol. 1, pp. 847–875. https://doi.org/10.1016/S0168-1273(78)01016-8

    Book  Google Scholar 

Download references

Funding

X-ray diagnostics experiments were performed using equipment available in the Kurchatov complex for synchrotronic and neutron studies in the National Research Center Kurchatov Institute; the experiments and analysis of experimental data were supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-1350 of October 5, 2021 (internal number 15.SIN.21.0004).

Studies performed in the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences and Ural Federal University Named after the First President of Russia B.N. Yeltsin were performed in term of state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme Spin, no. 122021000036-3) and supported by the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences (project for young scientists m 17-22). The synthesis of samples was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-115 of October 13, 2021 (internal number 15.SIN.21. 0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Likhachev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhachev, I.A., Subbotin, I.A., Chesnokov, Y.M. et al. Hydrogenation-Induced Modification of the Crystal Structure of Fe/Gd Superlattices. Phys. Metals Metallogr. 124, 1224–1232 (2023). https://doi.org/10.1134/S0031918X23602202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23602202

Keywords:

Navigation