Skip to main content
Log in

The Effect of Cold Deformation on the Structure, Texture, Elastic and Microdurometric Properties of Biocompatible Beta-Titanium Alloys Based on TiNbZr System

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Using the calculation and experimental techniques, we studied the effect of cold rolling to degrees of 85 and 90% on the structural and textural condition, microdurometric and elastic properties of the following quenched biocompatible β-titanium alloys (in at %): Ti–26% Nb–3% Zr, Ti–26% Nb–5% Zr, Ti–26% Nb–6% Zr, Ti–26% Nb–3% Zr–1% Sn, Ti–26% Nb–3% Zr–1% Sn–0.7% Ta. It is shown that an increase in the degree of deformation at cold rolling promotes the formation of a more pronounced two-component texture {001}β\(\left\langle {110} \right\rangle \)β, {112}β\(\left\langle {110} \right\rangle \) β, a growth in the microhardness, and a decrease in the values of the elastic modulus in the plane of rolling. It is established that there is good agreement between the calculation and experimental values of the elastic modulus of these alloys in the quenched and cold-rolled state. The effect of alloying and anisotropic state of the alloys (via the molybdenum equivalent and the Zener anisotropy index, respectively) on the levels of their microhardness, contact elastic modulus E, including the difference in E in different sections of cold-rolled sheet,—is considered. Those compositions of alloys and the modes of deformation are determined that allow one to obtain the lowest values of their own elastic moduli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Mater. Sci. Eng., R: Rep. 87, 1–57 (2015). https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  2. W. Weng, A. Biesiekierski, Yu. Li, and C. Wen, “Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications,” Materialia 6, 100323 (2019). https://doi.org/10.1016/j.mtla.2019.100323

    Article  CAS  Google Scholar 

  3. A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012). https://doi.org/10.1016/j.actbio.2012.01.018

    Article  CAS  Google Scholar 

  4. A. G. Illarionov, S. V. Grib, S. M. Illarionova, and A. A. Popov, “Relationship between structure, phase composition, and physicomechanical properties of quenched Ti–Nb alloys,” Phys. Met. Metallogr. 120, 150–156 (2019). https://doi.org/10.1134/s0031918x19020054

    Article  CAS  Google Scholar 

  5. Y. L. Hao, S. J. Li, S. Y. Sun, and R. Yang, “Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys,” Mater. Sci. Eng., A 441, 112–118 (2006). https://doi.org/10.1016/j.msea.2006.09.051

    Article  CAS  Google Scholar 

  6. M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Yo. Shinzato, and M. Morinaga, “Phase stability change with Zr content in β-type Ti–Nb alloys,” Scr. Mater. 57, 1000–1003 (2007). https://doi.org/10.1016/j.scriptamat.2007.08.003

    Article  CAS  Google Scholar 

  7. A. G. Illarionov, S. V. Grib, and A. S. Yurovskikh, “Scientific approaches to the development of titanium-based alloys for medical implants,” Solid State Phenom. 299, 462–467 (2019). doi 10.4028/www.scientific.net/ssp.299.462

  8. X. Wang, L. G. Zhang, Z. Guo, Yu. Jiang, X. M. Tao, and L. B. Liu, “Study of low-modulus biomedical β Ti–Nb–Zr alloys based on single-crystal elastic constants modeling,” J. Mech. Behav. Biomed. Mater. 62, 310–318 (2016). https://doi.org/10.1016/j.jmbbm.2016.04.040

    Article  CAS  Google Scholar 

  9. T. Inamura, H. Hosoda, K. Wakashima, and S. Miyazaki, “Anisotropy and temperature dependence of Young’s modulus in textured TiNbAl biomedical shape memory alloy,” Mater. Trans. 46, 1597–1603 (2005). https://doi.org/10.2320/matertrans.46.1597

    Article  CAS  Google Scholar 

  10. Y. L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y. L. Zhou, K. Fukunaga, and A. Suzuki, “Aging response of the Young’s modulus and mechanical properties of Ti–29Nb–13Ta–4.6Zr for biomedical applications,” Metall. Mater. Trans. A 34, 1007–1012 (2003). https://doi.org/10.1007/s11661-003-0230-x

    Article  Google Scholar 

  11. F. He, S. Yang, and J. Cao, “Effect of cold rolling and aging on the microstructure and mechanical properties of Ti–Nb–Zr alloy,” J. Mater. Eng. Perform. 29, 3411–3419 (2020). https://doi.org/10.1007/s11665-020-04810-0

    Article  CAS  Google Scholar 

  12. T. Inamura, R. Shimizu, H. Y. Kim, S. Miyazaki, and H. Hosoda, “Optimum rolling ratio for obtaining {001}\(\left\langle {110} \right\rangle \) recrystallization texture in Ti–Nb–Al biomedical shape memory alloy,” Mater. Sci. Eng., C 61, 499–505 (2016). https://doi.org/10.1016/j.msec.2015.12.08610.1016/j.msec.2015.12.086

    Article  CAS  Google Scholar 

  13. V.-D. Cojocaru, D. Raducanu, T. Gloriant, D. M. Gordin, and I. Cinca, “Effects of cold-rolling deformation on texture evolution and mechanical properties of Ti–29Nb–9Ta–10Zr alloy,” Mater. Sci. Eng., A 586, 1–10 (2013). https://doi.org/10.1016/j.msea.2013.08.010

    Article  CAS  Google Scholar 

  14. C. Lan, Yu. Wu, L. Guo, H. Chen, and F. Chen, “Microstructure, texture evolution and mechanical properties of cold rolled Ti–32.5Nb–6.8Zr–2.7Sn biomedical beta titanium alloy,” J. Mater. Sci. Technol. 34, 788–792 (2018). https://doi.org/10.1016/j.jmst.2017.04.017

    Article  CAS  Google Scholar 

  15. A. A. Korenev and A. G. Illarionov, “The calculated and experimental elastic properties of quenched biocompatible Ti–Nb, Ti–Nb–Zr, Ti–Nb–Zr–Sn, and Ti–Nb–Zr–Sn–Ta titanium alloys,” Phys. Met. Metallogr. 123, 1132–1138 (2022). https://doi.org/10.1134/s0031918x22601196

    Article  CAS  Google Scholar 

  16. C. Marker, S. Shang, J.-Ch. Zhao, and Z. Liu, “Elastic knowledge base of bcc Ti alloys from first-principles calculations and CALPHAD-based modeling,” Comput. Mater. Sci. 140, 121–139 (2017). https://doi.org/10.1016/j.commatsci.2017.08.037

    Article  CAS  Google Scholar 

  17. A. A. Korenev, S. V. Grib, and A. G. Illarionov, “Evolution of structure, physical and mechanical properties in biocompatible alloys Ti–39Nb–5Zr, Ti–39Nb–5Zr–2Sn, Ti-39Nb–5Zr–2Sn–2Ta under deformation and thermal effects,” AIP Conf. Proc. 2313, 60007 (2020). https://doi.org/10.1063/5.0036607

    Article  CAS  Google Scholar 

  18. A. G. Illarionov, I. V. Narygina, and S. V. Grib, “Temperature range definition of phase transformation in experimental biocompatible Ti–Nb–Zr system alloys by various methods,” Mater. Today: Proc. 19, 2385–2388 (2019). https://doi.org/10.1016/j.matpr.2019.08.040

    Article  CAS  Google Scholar 

  19. A. G. Illarionov, A. G. Nezhdanov, S. I. Stepanov, G. Muller-Kamskii, and A. A. Popov, “Structure, phase composition, and mechanical properties of biocompatible titanium alloys of different types,” Phys. Met. Metallogr. 121, 367–373 (2020). https://doi.org/10.1134/s0031918x20040055

    Article  CAS  Google Scholar 

  20. B. Jiang, Q. Wang, D. Wen, F. Xu, G. Chen, C. Dong, L. Sun, and P. K. Liaw, “Effects of Nb and Zr on structural stabilities of Ti–Mo–Sn-based alloys with low modulus,” Mater. Sci. Eng., A 687, 1–7 (2017). https://doi.org/10.1016/j.msea.2017.01.047

    Article  CAS  Google Scholar 

  21. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19, 3–20 (2004). https://doi.org/10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  22. S. I. Ranganathan and M. Ostoja-Starzewski, “Universal Elastic Anisotropy Index,” Phys. Rev. Lett. 101, 55504 (2008). https://doi.org/10.1103/physrevlett.101.055504

    Article  Google Scholar 

  23. S. A. Muslov, A. V. Shelyakov, and V. A. Andreev, Shape Memory Alloys: Properties, Preparation, and Application in Engineering and Medicine (MGMSU im. A.I. Evdokimova, Moscow, 2018) [in Russian].

  24. T. Paszkiewicz and S. Wolski, “Anisotropic properties of mechanical characteristics and auxeticity of cubic crystalline media,” Phys. Status Solidi B 244, 966–977 (2007). https://doi.org/10.1002/pssb.200572715

  25. H. Y. Kim, T. Sasaki, K. Okutsu, J. I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, “Texture and shape memory behavior of Ti–22Nb–6Ta alloy,” Acta Mater. 54, 423–433 (2006). https://doi.org/10.1016/j.actamat.2005.09.014

    Article  CAS  Google Scholar 

  26. M. Kowalik and K. W. Wojciechowski, “Poisson’s ratio of orientationally disordered hard dumbbell crystal in three dimensions,” J. Non-Cryst. Solids 352 (40–41), 4269–4278 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.07.038

    Article  CAS  Google Scholar 

  27. D. Kent, G. Wang, and M. Dargusch, “Effects of phase stability and processing on the mechanical properties of Ti–Nb based β Ti alloys,” J. Mech. Behav. Biomed. Mater. 28, 15–25 (2013). https://doi.org/10.1016/j.jmbbm.2013.07.007

    Article  CAS  Google Scholar 

  28. Yu. Y. Khrunyk, S. Ehnert, S. V. Grib, A. G. Illarionov, S. I. Stepanov, A. A. Popov, M. A. Ryzhkov, S. V. Belikov, Z. Xu, F. Rupp, and A. K. Nüssler, “Synthesis and characterization of a novel biocompatible alloy, Ti–Nb–Zr–Ta–Sn,” Int. J. Mol. Sci. 22, 10611 (2021). https://doi.org/10.3390/ijms221910611

    Article  CAS  Google Scholar 

  29. B. W. Levinger, “Lattice parameter of beta titanium at room temperature,” JOM 5, 195–195 (1953). https://doi.org/10.1007/bf03397474

    Article  Google Scholar 

Download references

Funding

The work is supported by the state assignment of the Ural Federal University by the Ministry of Science and Education of the Russian Federation, project no. 0836-2020-0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Illarionov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenev, A.A., Illarionov, A.G. The Effect of Cold Deformation on the Structure, Texture, Elastic and Microdurometric Properties of Biocompatible Beta-Titanium Alloys Based on TiNbZr System. Phys. Metals Metallogr. 124, 575–582 (2023). https://doi.org/10.1134/S0031918X23600768

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600768

Keyword:

Navigation