Skip to main content
Log in

Martensitic Transformation and Magnetic Phase Transitions in Heusler Alloys with Cobalt Substituting for Nickel

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—In the Ni47Mn42In11 and Ni43Со4Mn42In11 alloys, structural and magnetic phase transformations were studied by the magnetometry, dilatometry, and structural analysis. The temperatures of structural and magnetic transitions of the Ni43Со4Mn42In11 alloy have been determined. It has been shown that cobalt doping significantly increases the difference between the martensitic transformation temperature and Curie temperature. It has been found that in this alloy the martensitic transformation is accompanied by jumps in the temperature dependences of linear thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Ullakko, J. K. Huang, C. Kantner, R. C. OHandley, and V. V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals,” Appl. Phys. Lett. 69, 1966 (1996).

    Article  CAS  Google Scholar 

  2. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V.  Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46 (6), 559–588.

  3. D. Buchel’nikov, A. N. Vasil’ev, V. Koledov, V. Khovailo, S Taskaev, and V. G. Shavrov, “Magnetic shape-memory alloys: phase transitions and functional properties,” Phys.-Usp. 49 (8), 871–877 (2006).

    Article  Google Scholar 

  4. V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina, Martensitic Transformation in Magnetic Field (UrO RAN, Yekaterinburg, 2007) [in Russian].

    Google Scholar 

  5. N. I. Kourov, A. V. Korolev, V. G. Pushin, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo, “Electrical and magnetic properties of the rapidly quenched Ni2.16Mn0.84Ga alloy with the shape-memory effect,” Phys. Met. Metallogr. 99 (4), 376 (2005).

    Google Scholar 

  6. N. I. Kourov, V. G. Pushin, A. V. Korolev, V. A. Kazantsev, E. B. Marchenkova, and A. N. Uksusnikov, “Effect of severe plastic deformation on the structure and properties of the Ni2.16Mn0.84Ga alloy,” Phys. Met. Metallogr. 103 (3), 270–277 (2007).

    Article  Google Scholar 

  7. M. A. Marioni, R. C. O’Handley, S. M. Allen, S. R. Hall, D. I. Paul, M. L. Richard, J. Feuchtwanger, B. W. Peterson, J. M. Chambers, and R. Techapiesancharoenkij, “The ferromagnetic shape-memory effect in Ni–Mn–Ga,” J. Magn. Magn. Mater. 290–291, 35–41 (2005).

    Article  Google Scholar 

  8. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, A. Planes, E. Suard, and B. Ouladdiaf, “Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In,” Phys. Rev. B 75, 104414 (2007).

    Article  Google Scholar 

  9. A. Planes, L. Manosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Phys.: Condens. Matter 21, 233201 (2009).

    Google Scholar 

  10. V. D. Buchelnikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633–665 (2011).

    Article  Google Scholar 

  11. Yu. V. Kaletina and E. G. Gerasimov, “Martensitic transformations and magnetic properties of nonstoichiometric alloys of the Ni–Mn–In system,” Phys. Solid State 56, 1634–1638 (2014).

    Article  CAS  Google Scholar 

  12. H. E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y. I. Chumlyakov, and H. J. Maier, “Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—a new actuation mechanism with large work output,” Adv. Funct. Mater. 19, 983–998 (2009).

    Article  CAS  Google Scholar 

  13. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys,” Nat. Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  14. V. M. Schastlivtsev, Yu. V. Kaletina, E. A. Fokina, and V. A. Kazantsev, “Martensitic and magnetic transformations in Ni–Mn–In alloys,” Phys. Met. Metallogr. 112 (1), 61–71 (2011).

    Article  Google Scholar 

  15. Yu. V. Kaletina, E. G. Gerasimov, V. M. Schastlivtsev, E. A. Fokina, and P. B. Terent’ev, “Magnetic-field-induced martensitic transformations in Ni47 ‒ xMn42 + xIn11 alloys (with 0 ≤ x ≤ 2),” Phys. Met. Metallogr. 114, 838–844 (2013).

    Article  Google Scholar 

  16. R. Kainuma, Y. Imaho, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439, 957–960 (2006).

    Article  CAS  Google Scholar 

  17. R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, and K. Ishida, “Metamagnetic shape memory effect in a Heusler type Ni43Co7Mn39Sn11 crystalline alloy,” J. Appl. Phys. Lett. 88, 192513 (2006).

    Article  Google Scholar 

  18. S. Y. Yu, L. Ma, G. D. Liu, Z. H. Liu, J. L. Chen, Z. X. Cao, G. H. Wu, B. Zhang, and X. X. Zhang, “Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys,” J. Appl. Phys. Lett. 90, 242501 (2007).

    Article  Google Scholar 

  19. A. K. Nayak, K. G. Suresh, and A. K. Nigam, “Observation of enhanced exchange bias behaviour in NiCoMnSb Heusler alloys,” J. Phys. D: Appl. Phys. 42, 115004 (2009).

    Article  Google Scholar 

  20. V. D. Buchelnikov, S. V. Taskaev, M. O. Drobosyuk, V. V. Sokolovskiy, V. V. Koledov, V. V. Khovaylo, V. G. Shavrov, and A. A. Fediy, “Magnetocaloric effect in Ni–Mn–Ga and Ni–Co–Mn–In Heusler alloys,” In Abstracts of MRS Fall Meeting (Boston, 2009), pp. 92–99.

  21. R. Modak, M. M. Raja, and A. Srinivasan, “Enhanced magneto-caloric effect upon Co substitution in Ni–Mn–Sn thin films,” J. Magn. Magn. Mater. 448, 146–152 (2018).

    Article  CAS  Google Scholar 

  22. L. Huang, D. Y. Cong, H. L. Suo, and Y. D. Wang, “Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy,” Appl. Phys. Lett. 104, 132407 (2014).

    Article  Google Scholar 

  23. L. Chen, F. X. Hu, J. Wang, L. F. Bao, J. R. Sun, B. G. Shen, J. H. Yin, L. Q. Pan, “Magnetoresistance and magnetocaloric properties involving strong metamagnetic behavior in Fe-doped Ni45(Co1 – xFex)5Mn36.6In13.4 alloys,” Appl. Phys. Lett. 101, 12401 (2012).

    Article  Google Scholar 

  24. S. Fabbrici, J. Kamarad, Z. Arnold, F. Casoli, A. Paoluzi, F. Bolzoni, R. Cabassi, M. Solzi, G. Porcari, C. Pernechele, and F. Albertini, “From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys,” Acta Mater. 59, 412–419 (2011).

    Article  CAS  Google Scholar 

  25. T. Paramanik and I. Das, “Near room temperature giant magnetocaloric effect and giant negative magnetoresistance in Co, Ga substituted Ni–Mn–In Heusler alloy,” J. Alloys Compd. 654, 399–403 (2016).

    Article  CAS  Google Scholar 

  26. N. M. Bruno, Y. J. Huang, C. L. Dennis, J. G. Li, R. D. Shull, J. H. Ross, Y. I. Chumlyakov, and I. Karaman, “Effect of grain constraint on the field requirements for magnetocaloric effect in Ni45Co5Mn40Sn10 melt-spun ribbons,” J. Appl. Phys. 120, 075101 (2016).

    Article  Google Scholar 

  27. T. Kihara, X. Xu, W. Ito, R. Kainuma, and M. Tokunaga, “Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn,” Phys. Rev. B 90, 214409 (2014).

    Article  Google Scholar 

  28. V. V. Sokolovskiy, P. Entel, V. D. Buchelnikov, and M. E. Gruner, “Achieving large magnetocaloric effects in Co-and Cr-substituted Heusler alloys: Predictions from firstprinciples and Monte Carlo studies,” Phys. Rev. B 91, 220409 (2015).

    Article  Google Scholar 

  29. Yu. V. Kaletina, N. Yu. Frolova, V. M. Gundyrev, and A. Yu. Kaletin, “Phase transformations and structure of Ni–Mn–In alloys with varying ratio Ni/Mn,” Phys. Solid State 58 (8), 1663–1670 (2016).

    Article  CAS  Google Scholar 

  30. Yu. V. Kaletina, I. G. Kabanova, and A. Yu. Kaletin, “Structure and crystallographic peculiarities of martensite in Ni–Co–Mn–In alloy,” Phys. Met. Metallogr. 122 (9), 876–882 (2021).

    Article  CAS  Google Scholar 

  31. Yu. V. Kaletina, I. G. Kabanova, N. Yu. Frolova, V. M. Gundyrev, and A. Yu. Kaletin, “Crystallographic specific features of the martensitic structure of Ni47Mn42In11 alloy,” Phys. Solid State 59, 2008–2015 (2017).

    Article  CAS  Google Scholar 

  32. Yu Kaletina, I. G. Kabanova, N. Yu. Frolova and A. Yu. Kaletin, “Crystal structure peculiarities of martensite in the Ni47Mn42In11 alloy that underwent forward and reverse phase transformations,” Phys. Met. Metallogr. 119, 383–387 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

The work is performed in the framework of state assignment of the Ministry of Education and Science of Russia (theme “Structure”, no. 122021000033-2 and “Pressure” no. 122021000032-5) with partial support of RFBR (project no. 20-03-00056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kaletina.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaletina, Y.V., Gerasimov, E.G., Kaletin, A.Y. et al. Martensitic Transformation and Magnetic Phase Transitions in Heusler Alloys with Cobalt Substituting for Nickel. Phys. Metals Metallogr. 123, 1156–1160 (2022). https://doi.org/10.1134/S0031918X22601305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601305

Keywords:

Navigation