Skip to main content
Log in

Magneto-Optical Probing of the Magnetic State and Phase Composition of InFeAs Layers

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The spectral, temperature, and magnetic field dependences of the magneto-optical transversal Kerr effect (TKE) have been studied along with the optical spectra of InFeAs layers formed by ion implantation with further pulsed laser melting at different laser pulse energies. A strong dependence of the magneto-optical and optical properties of InFeAs layers on the pulse energy has been revealed. The TKE spectra of the specimen formed at a minimum pulse energy (W = 0.1 J/cm2) indicate the presence of ferromagnetic (In, Fe)As nanoclusters with a Curie temperature of ≈180 K in the weakly doped semiconductive matrix and the absence of secondary magnetic phases. The TKE spectra of layers formed at W = 0.15–0.4 J/cm2 are a superposition of the contributions from ferromagnetic (In,Fe)As nanoareas distributed in the volume and near-surface Fe inclusions. The predominance of the iron contribution in the spectra indicates the intensification of Fe diffusion towards the surface with an increase in the laser pulse energy. Anisotropy in the magneto-optical and optical spectra confirms anisotropic chemical phase separation in the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. N. Hai, L. D. Anh, S. Mohan, T. Tamegai, M. Kodzuka, T. Ohkubo, K. Hono, and M. Tanaka, “Growth and characterization of n-type electron-induced ferromagnetic semiconductor (In,Fe)As,” Appl. Phys. Lett. 101, 182403 (2012).

    Article  Google Scholar 

  2. P. N. Hai, L. D. Anh, and M. Tanaka, “Electron effective mass in n-type electron-induced ferromagnetic semiconductor (In,Fe)As: Evidence of conduction band transport,” Appl. Phys. Lett. 101, 252410 (2012).

    Article  Google Scholar 

  3. S. Sakamoto, L. D. Anh, P. N. Hai, G. Shibata, Y. Takeda, M. Kobayashi, Y. Takahashi, T. Koide, M. Tanaka, and A. Fujimori, “Magnetization process of the n-type ferromagnetic semiconductor (In,Fe)As:Be studied by X-ray magnetic circular dichroism,” Phys. Rev. B 93, 035203 (2016).

    Article  Google Scholar 

  4. N. T. Tu, P. N. Hai, L. D. Anh, and M. Tanaka, “High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb,” Appl. Phys. Lett. 108, 192401 (2016).

    Article  Google Scholar 

  5. N. T. Tu, P. N. Hai, L. D. Anh, and M. Tanaka, “Heavily Fe-doped ferromagnetic semiconductor (In,Fe)Sb with high Curie temperature and large magnetic anisotropy,” Appl. Phys. Exp. 12, 103004 (2019).

    Article  Google Scholar 

  6. P. N. Hai, M. Yoshida, A. Nagamine, and M. Tanaka, “Inhomogeneity-induced high temperature ferromagnetism in n-type ferromagnetic semiconductor (In,Fe)As grown on vicinal GaAs substrates,” Jpn. J. Appl. Phys. 59, 063002 (2020).

    Article  CAS  Google Scholar 

  7. Y. Yuan, R. Hübner, M. Birowska, Ch. Xu, M. Wang, S. Prucnal, R. Jakiela, K. Potzger, R. Böttger, S. Facsko, J. A. Majewski, M. Helm, M. Sawicki, Sh. Zhou, and T. Dietl, “Nematicity of correlated systems driven by anisotropic chemical phase separation,” Phys. Rev. Mater. 2, 114601 (2018).

    Article  Google Scholar 

  8. T. Dietl, K. Sato, T. Fukushima, A. Bonanni, M. Jamet, A. Barski, S. Kuroda, M. Tanaka, P. N. Hai, and H. Katayama-Yoshida, “Spinodal nanodecomposition in semiconductors doped with transition metals,” Rev. Mod. Phys. 87, 1311–1377 (2015).

    Article  CAS  Google Scholar 

  9. L. M. C. Pereira, “Experimentally evaluating the origin of dilute magnetism in nanomaterials,” J. Phys. D: Appl. Phys. 50, 393002 (2017).

  10. K. Ando, Magneto-Optics of Diluted Magnetic Semiconductors: New Materials and Applications, Magneto-Optics, Ed. by S. Sugano and N. Kojima (Springer, Berlin, 2000), Vol. 128, pp. 211–241.

    Google Scholar 

  11. E. D. Palik and R. T. Holm, Indium arsenide, Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, Orlando, 1985), pp. 479–489.

    Google Scholar 

  12. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).

    Article  CAS  Google Scholar 

  13. T. J. Kim, J. J. Yoon, S. Y. Hwang, Y. W. Jung, T. H. Ghong, Y. D. Kim, H. J. Kim, and Y.-C. Chang, “InAs critical-point energies at 22 K from spectroscopic ellipsometry,” Appl. Phys. Lett. 97, 171912 (2010).

    Article  Google Scholar 

  14. E. A. Gan’shina, L. L. Golik, Z. E. Kun’kova, G. S. Zykov, A. I. Rukovishnikov, and Yu. V. Markin, “Magnetic inhomogeneity manifestations in the magneto-optical spectra of (In–Mn)As layers,” IEEE Magn. Lett. 11, 2502105 (2020).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.I. Rukovishnikov for the measurements of the ellipsometry spectra.

Funding

This study was performed within the state assignment to the Kotel’nikov Institute of Radio Engineering and Electronics (Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. E. Kun’kova.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan’shina, E.A., Kun’kova, Z.E., Pripechenkov, I.M. et al. Magneto-Optical Probing of the Magnetic State and Phase Composition of InFeAs Layers. Phys. Metals Metallogr. 123, 1098–1104 (2022). https://doi.org/10.1134/S0031918X22601287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601287

Keywords:

Navigation