Skip to main content
Log in

The Formation of Segregations and Nanofaceting of Asymmetric Special Grain Boundaries in Al

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Formation of segregations of Mg and Ni at the asymmetric special tilt grain boundaries Σ5{010}/{340}❬001❭ and Σ5{110}/{710}❬001❭ in Al has been studied using atomistic simulation methods. It has been shown that the formation of segregations can considerably modify the structure of asymmetric grain boundaries (GBs). Although the segregation of Mg is accompanied by local distortions of a GB, its plane slightly deviates from the initial position. At the same time, the segregation of Ni results in nanofaceting of GBs. The role of features of a chemical bond in reconstructing GBs induced by segregations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer, Heidelberg, 1970).

    Book  Google Scholar 

  2. A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995).

    Google Scholar 

  3. P. Lejček, Grain Boundary Segregation in Metals (Springer, New York, 2010).

    Book  Google Scholar 

  4. L. Priester, Grain Boundaries: From Theory to Engineering (Springer, New York, 2014).

    Google Scholar 

  5. B. B. Straumal, O. A. Kogtenkova, A. S. Gornakova, V. G. Sursaeva, and B. Baretzky, “Review: grain boundary faceting–roughening phenomena,” J. Mater. Sci. 51, 382–404 (2016).

    Article  CAS  Google Scholar 

  6. P. R. Cantwell, T. Frolov, T. J. Rupert, A. R. Krause, C. J. Marvel, G. S. Rohrer, J. M. Rickman, and M. P. Harmer, “Grain boundary complexion transitions,” Annu. Rev. Mater. Res. 50, 465–492 (2020).

    Article  CAS  Google Scholar 

  7. J. W. Cahn, “Transitions and phase equilibria among grain boundary structures,” J. Phys. Colloq. 43, C6-199–C6-213 (1982).

  8. J. C. Hamilton, D. J. Siegel, I. Daruka, and F. Léonard, “Why do grain boundaries exhibit finite facet lengths,” Phys. Rev. Lett. 90, 246102 (2003).

    Article  CAS  Google Scholar 

  9. Z. X. Wu, Y. W. Zhang, and D. J. Srolovitz, “Grain boundary finite length faceting,” Acta Mater. 57, 4278–4287 (2009).

    Article  CAS  Google Scholar 

  10. F. C. Frank, The Geometrical Thermodynamics of Surfaces. Metal Surfaces: Structure, Energetics and Kinetics (Amer. Soc. Metals, Metal Park, 1963), pp. 1–15.

    Google Scholar 

  11. D. L. Medlin, K. Hattar, J. A. Zimmerman, F. Abdeljawad, and S. M. Foiles, “Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe,” Acta Mater. 124, 383–396 (2017).

    Article  CAS  Google Scholar 

  12. N. J. Peter, T. Frolov, M. J. Duarte, R. Hadian, C. Ophus, C. Kirchlechner, C. H. Liebscher, G. Dehm, “Segregation-induced nanofaceting transition at an asymmetric tilt grain boundary in copper,” Phys. Rev. Lett. 121, 255502 (2018).

    Article  CAS  Google Scholar 

  13. H. Zhao, L. Huber, W. Lu, N. J. Peter, D. An, F. De Geuser, G. Dehm, D. Ponge, J. Neugebauer, B. Gault, and D. Raabe, “Interplay of chemistry and faceting at grain boundaries in a model Al alloy,” Phys. Rev. Lett. 124, 106102 (2020).

    Article  CAS  Google Scholar 

  14. Pe N. J. Peter, M. J. Duarte, C. Kirchlechner, C. H. Liebscher, and G. Dehm, “Faceting diagram for Ag segregation induced nanofaceting at an asymmetric Cu tilt grain boundary,” Acta Mater. 214, 116960 (2021).

    Article  Google Scholar 

  15. J. Creuze, F. Berthier, R. Tétot, and B. Legrand, “Wetting and structural transition induced by segregation at grain boundaries: A Monte Carlo study,” Phys. Rev. Lett. 86, 5735 (2001).

    Article  CAS  Google Scholar 

  16. L. Karkina, I. Karkin, A. Kuznetsov, and Y. Gornostyrev, “Alloying element segregation and grain boundary reconstruction, atomistic modeling,” Metals 9, 1319 (2019).

    Article  CAS  Google Scholar 

  17. L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “Effect of alloying element segregations on the grain boundary sliding in Al–Mg and Al–Ni alloy bicrystals: atomistic modeling,” Phys. Met. Metallogr. 121(9), 817–822 (2020).

    Article  Google Scholar 

  18. A. Kuznetsov, L. Karkina, Yu. Gornostyrev, and P. Korzhavyi, “Effects of Zn and Mg segregations on the grain boundary sliding and cohesion in Al: Ab Initio modeling,” Metals 11, 631 (2021).

    Article  CAS  Google Scholar 

  19. L. E. Kar’kina, I. N. Kar’kin, and Yu. N. Gornostyrev, “Grain boundary sliding along special asymmetric grain boundaries in the Al bicrystals: Atomistic molecular dynamics simulation,” Phys. Met. Metallogr. 122(11), 1103–1111 (2021).

    Article  Google Scholar 

  20. http://lammps.sandia.gov/index.html.

  21. M. I. Mendelev, M. Asta, M. J. Rahman, and J. J. Hoyt, “Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys,” Philos. Mag. 89, 3269 (2009).

    Article  CAS  Google Scholar 

  22. G. P. P. Pun and Y. Mishin, “Development of an interatomic potential for the Ni–Al system,” Philos. Mag. 89(34–36), 3245–3267 (2009).

    Article  Google Scholar 

  23. L. E. Karkina, I. N. Karkin, A. R. Kuznetsov, I. K. Razumov, P. A. Korzhavyi, and Y. N. Gornostyrev, “Solute-grain boundary interaction and segregation formation in Al: First principles calculations and molecular dynamics modeling,” Comput. Mater. Sci. 112, 18–26 (2016).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed within the state task of the Ministry of Education and Science of the Russian Federation, the projects “Pressure” no. 122021000032-5 and “Structure” no. 122021000033-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Kar’kina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar’kina, L.E., Kar’kin, I.N. & Gornostyrev, Y.N. The Formation of Segregations and Nanofaceting of Asymmetric Special Grain Boundaries in Al. Phys. Metals Metallogr. 123, 1011–1016 (2022). https://doi.org/10.1134/S0031918X22601020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601020

Keywords:

Navigation